auto-draft / utils /references.py
shaocongma
use most relevant papers as references.
2dc9347
raw
history blame
15.1 kB
# Each `paper` is a dictionary containing:
# (1) paper_id (2) title (3) authors (4) year (5) link (6) abstract (7) journal (8) embeddings
#
# Generate references:
# `Reference` class:
# 1. Read a given .bib file to collect papers; use `search_paper_abstract` method to fill missing abstract.
# 2. Given some keywords; use Semantic Scholar API to find papers.
# 3. Generate bibtex from the selected papers. --> to_bibtex()
# 4. Generate prompts from the selected papers: --> to_prompts()
# A sample prompt: {"paper_id": "paper summary"}
# todo: (1) citations & citedby of provided papers:
# load the pre-defined papers; use S2 to find all related works
# add all citations to `bib_papers`
# add all citedby to `bib_papers`
# use Semantic Scholar to find their embeddings
# (2) separate references:
# divide references into different groups to reduce the tokens count
# for generating different paragraph of related works, use different set of references
import requests
import re
import bibtexparser
import random
from scholarly import scholarly
from scholarly import ProxyGenerator
import tiktoken
import itertools, uuid, json
from gradio_client import Client
######################################################################################################################
# Some basic tools
######################################################################################################################
def remove_newlines(serie):
# This function is applied to the abstract of each paper to reduce the length of prompts.
serie = serie.replace('\n', ' ')
serie = serie.replace('\\n', ' ')
serie = serie.replace(' ', ' ')
serie = serie.replace(' ', ' ')
return serie
def search_paper_abstract(title):
pg = ProxyGenerator()
success = pg.FreeProxies() #pg.ScraperAPI("921b16f94d701308b9d9b4456ddde155")
if success:
try:
scholarly.use_proxy(pg)
# input the title of a paper, return its abstract
search_query = scholarly.search_pubs(title)
found_paper = next(search_query)
except:
return ""
else:
return ""
# raise RuntimeError("ScraperAPI fails.")
return remove_newlines(found_paper['bib']['abstract'])
def load_papers_from_bibtex(bib_file_path):
with open(bib_file_path) as bibtex_file:
bib_database = bibtexparser.load(bibtex_file)
if len(bib_database.entries) == 0:
return []
else:
bib_papers = []
for bibitem in bib_database.entries:
# Add each paper to `bib_papers`
paper_id = bibitem.get("ID")
title = bibitem.get("title")
if title is None:
continue
journal = bibitem.get("journal")
year = bibitem.get("year")
author = bibitem.get("author")
abstract = bibitem.get("abstract")
if abstract is None:
abstract = search_paper_abstract(title)
result = {
"paper_id": paper_id,
"title": title,
"link": "",
"abstract": abstract,
"authors": author,
"year": year,
"journal": journal
}
bib_papers.append(result)
return bib_papers
# `tokenizer`: used to count how many tokens
tokenizer_name = tiktoken.encoding_for_model('gpt-4')
tokenizer = tiktoken.get_encoding(tokenizer_name.name)
def tiktoken_len(text):
# evaluate how many tokens for the given text
tokens = tokenizer.encode(text, disallowed_special=())
return len(tokens)
######################################################################################################################
# Semantic Scholar (SS) API
######################################################################################################################
def ss_search(keywords, limit=20, fields=None):
# space between the query to be removed and replaced with +
if fields is None:
fields = ["title", "abstract", "venue", "year", "authors", "tldr", "embedding", "externalIds"]
keywords = keywords.lower()
keywords = keywords.replace(" ", "+")
url = f'https://api.semanticscholar.org/graph/v1/paper/search?query={keywords}&limit={limit}&fields={",".join(fields)}'
# headers = {"Accept": "*/*", "x-api-key": constants.S2_KEY}
headers = {"Accept": "*/*"}
response = requests.get(url, headers=headers, timeout=30)
return response.json()
def _collect_papers_ss(keyword, counts=3, tldr=False):
def externalIds2link(externalIds):
# Sample externalIds:
# "{'MAG': '2932819148', 'DBLP': 'conf/icml/HaarnojaZAL18', 'ArXiv': '1801.01290', 'CorpusId': 28202810}"
if externalIds:
# Supports ArXiv, MAG, ACL, PubMed, Medline, PubMedCentral, DBLP, DOI
# priority: DBLP > arXiv > (todo: MAG > CorpusId > DOI > ACL > PubMed > Mdeline > PubMedCentral)
# DBLP
dblp_id = externalIds.get('DBLP')
if dblp_id is not None:
dblp_link = f"dblp.org/rec/{dblp_id}"
return dblp_link
# arXiv
arxiv_id = externalIds.get('ArXiv')
if arxiv_id is not None:
arxiv_link = f"arxiv.org/abs/{arxiv_id}"
return arxiv_link
return ""
else:
# if this is an empty dictionary, return an empty string
return ""
def extract_paper_id(last_name, year_str, title):
pattern = r'^\w+'
words = re.findall(pattern, title)
# return last_name + year_str + title.split(' ', 1)[0]
try:
output = last_name + year_str + words[0]
except IndexError:
output = last_name + year_str + title[:4]
return output
def extract_author_info(raw_authors):
authors = [author['name'] for author in raw_authors]
authors_str = " and ".join(authors)
try:
last_name = authors[0].split()[-1]
last_name = last_name.replace("'", "")
except IndexError:
last_name = "ma"
# pattern = r'^\w+'
# last_name = re.findall(pattern, authors[0])
return authors_str, last_name
def parse_search_results(search_results_ss):
if len(search_results_ss) == 0:
return []
# turn the search result to a list of paper dictionary.
papers_ss = []
for raw_paper in search_results_ss:
if raw_paper["abstract"] is None:
continue
authors_str, last_name = extract_author_info(raw_paper['authors'])
year_str = str(raw_paper['year'])
title = raw_paper['title']
# some journal may contain &; replace it. e.g. journal={IEEE Power & Energy Society General Meeting}
journal = raw_paper['venue'].replace("&", "\\&")
if not journal:
journal = "arXiv preprint"
paper_id = extract_paper_id(last_name, year_str, title).lower()
link = externalIds2link(raw_paper['externalIds'])
if tldr and raw_paper['tldr'] is not None:
abstract = raw_paper['tldr']['text']
else:
abstract = remove_newlines(raw_paper['abstract'])
# some papers have no embeddings; handle this case
embeddings_dict = raw_paper.get('embedding')
if embeddings_dict is None:
continue
else:
embeddings = raw_paper['embedding']['vector']
result = {
"paper_id": paper_id,
"title": title,
"abstract": abstract,
"link": link,
"authors": authors_str,
"year": year_str,
"journal": journal,
"embeddings": embeddings
}
papers_ss.append(result)
return papers_ss
raw_results = ss_search(keyword, limit=counts)
if raw_results is not None:
search_results = raw_results.get("data")
if search_results is None:
search_results = []
else:
search_results = []
results = parse_search_results(search_results)
return results
######################################################################################################################
# References Class
######################################################################################################################
class References:
def __init__(self, title, load_papers=None, keyword="customized_refs"):
if load_papers is not None:
self.papers = {}
self.papers[keyword] = load_papers_from_bibtex(load_papers)
else:
self.papers = {}
self.title = title
def load_papers(self, bibtex, keyword):
self.papers[keyword] = load_papers_from_bibtex(bibtex)
def generate_keywords_dict(self):
keywords_dict = {}
for k in self.papers:
keywords_dict[k] = len(self.papers[k])
return keywords_dict
def collect_papers(self, keywords_dict, tldr=False):
"""
Collect as many papers as possible
keywords_dict:
{"machine learning": 5, "language model": 2};
the first is the keyword, the second is how many references are needed.
"""
keywords = list(keywords_dict)
comb_keywords = list(itertools.combinations(keywords, 2))
for comb_keyword in comb_keywords:
keywords.append(" ".join(comb_keyword))
for key in keywords:
self.papers[key] = _collect_papers_ss(key, 10, tldr)
# for key, counts in keywords_dict.items():
# self.papers[key] = _collect_papers_ss(key, counts, tldr)
def to_bibtex(self, path_to_bibtex="ref.bib"):
"""
Turn the saved paper list into bibtex file "ref.bib". Return a list of all `paper_id`.
"""
# todo:
# use embeddings to evaluate; keep top k relevant references in papers
# send (title, .bib file) to evaluate embeddings; recieve truncated papers
papers = self._get_papers(keyword = "_all")
# clear the bibtex file
with open(path_to_bibtex, "w", encoding="utf-8") as file:
file.write("")
bibtex_entries = []
paper_ids = []
seen = set()
for paper in papers:
if paper["paper_id"] in seen:
continue
else:
seen.add(paper["paper_id"])
bibtex_entry = f"""@article{{{paper["paper_id"]},
title = {{{paper["title"]}}},
author = {{{paper["authors"]}}},
journal={{{paper["journal"]}}},
year = {{{paper["year"]}}},
url = {{{paper["link"]}}}
}}"""
bibtex_entries.append(bibtex_entry)
paper_ids.append(paper["paper_id"])
# Save the generated BibTeX entries to a file
with open(path_to_bibtex, "a", encoding="utf-8") as file:
file.write(bibtex_entry)
file.write("\n\n")
return paper_ids
def _get_papers(self, keyword = "_all"):
if keyword == "_all":
papers = []
for k, v in self.papers.items():
papers = papers + v
else:
papers = self.papers["keyword"]
return papers
def to_prompts(self, keyword = "_all", max_tokens = 2048):
# `prompts`:
# {"paper1_bibtex_id": "paper_1_abstract", "paper2_bibtex_id": "paper2_abstract"}
# this will be used to instruct GPT model to cite the correct bibtex entry.
# two steps:
# 1. Sort everything from most relevant to less relevant
# 2. Add paper to prompts until max_tokens
json_path = str(uuid.uuid1()) + ".json"
papers_json = self.to_json()
with open(json_path, "w") as f:
json.dump(papers_json, f)
try:
title = self.title
client = Client("https://shaocongma-evaluate-specter-embeddings.hf.space/")
result = client.predict(
title, # str in 'Title' Textbox component
json_path, # str (filepath or URL to file) in 'Papers JSON (as string)' File component
50, # int | float (numeric value between 1 and 50) in 'Top-k Relevant Papers' Slider component
api_name="/get_k_relevant_papers"
)
with open(result) as f:
result = json.load(f)
result = [item for key, item in result.items()]
except Exception as e:
print(f"Error occurs during calling external API: {e}\n")
print("Use default method instead!")
result = self._get_papers(keyword)
prompts = {}
tokens = 0
for paper in result:
prompts[paper["paper_id"]] = paper["abstract"]
tokens += tiktoken_len(paper["abstract"])
if tokens >= max_tokens:
break
return prompts
def to_json(self, keyword = "_all"):
papers = self._get_papers(keyword)
papers_json = {}
for paper in papers:
papers_json[paper["paper_id"]] = paper
return papers_json
if __name__ == "__main__":
# testing search results
print("================Testing `ss_search`================")
r = ss_search("Deep Q-Networks", limit=1) # a list of raw papers
if r['total'] > 0:
paper = r['data'][0]
# print(paper)
# resting References
print("================Testing `References`================")
refs = References(title="Super Deep Q-Networks")
keywords_dict = {
"Deep Q-Networks": 5,
"Actor-Critic Algorithms": 4,
"Exploration-Exploitation Trade-off": 3
}
print("================Testing `References.collect_papers`================")
refs.collect_papers(keywords_dict, tldr=True)
for k in refs.papers:
papers = refs.papers[k] # for each keyword, there is a list of papers
print("keyword: ", k)
for paper in papers:
print(paper["paper_id"])
print("================Testing `References.to_bibtex`================")
refs.to_bibtex()
print("================Testing `References.to_json`================")
papers_json = refs.to_json() # this json can be used to find the most relevant papers
with open("papers.json", "w", encoding='utf-8') as text_file:
text_file.write(f"{papers_json}")
print("================Testing `References.to_prompts`================")
prompts = refs.to_prompts()
print(prompts)
# bib = "test.bib"
# refs.load_papers(bib, "variance-reduction rl")
# print(refs.papers)
#
# prompts = refs.to_prompts()
# for k in prompts:
# print(f"{k}: {prompts[k]}\n")