Spaces:
Running
Running
from utils.references import References | |
from utils.prompts import generate_paper_prompts, generate_keywords_prompts, generate_experiments_prompts | |
from utils.gpt_interaction import get_responses, extract_responses, extract_keywords, extract_json | |
from utils.tex_processing import replace_title | |
from utils.figures import generate_random_figures | |
import datetime | |
import shutil | |
import time | |
import logging | |
import os | |
TOTAL_TOKENS = 0 | |
TOTAL_PROMPTS_TOKENS = 0 | |
TOTAL_COMPLETION_TOKENS = 0 | |
def make_archive(source, destination): | |
base = os.path.basename(destination) | |
name = base.split('.')[0] | |
format = base.split('.')[1] | |
archive_from = os.path.dirname(source) | |
archive_to = os.path.basename(source.strip(os.sep)) | |
shutil.make_archive(name, format, archive_from, archive_to) | |
shutil.move('%s.%s'%(name,format), destination) | |
return destination | |
def log_usage(usage, generating_target, print_out=True): | |
global TOTAL_TOKENS | |
global TOTAL_PROMPTS_TOKENS | |
global TOTAL_COMPLETION_TOKENS | |
prompts_tokens = usage['prompt_tokens'] | |
completion_tokens = usage['completion_tokens'] | |
total_tokens = usage['total_tokens'] | |
TOTAL_TOKENS += total_tokens | |
TOTAL_PROMPTS_TOKENS += prompts_tokens | |
TOTAL_COMPLETION_TOKENS += completion_tokens | |
message = f"For generating {generating_target}, {total_tokens} tokens have been used ({prompts_tokens} for prompts; {completion_tokens} for completion). " \ | |
f"{TOTAL_TOKENS} tokens have been used in total." | |
if print_out: | |
print(message) | |
logging.info(message) | |
def pipeline(paper, section, save_to_path, model): | |
""" | |
The main pipeline of generating a section. | |
1. Generate prompts. | |
2. Get responses from AI assistant. | |
3. Extract the section text. | |
4. Save the text to .tex file. | |
:return usage | |
""" | |
print(f"Generating {section}...") | |
prompts = generate_paper_prompts(paper, section) | |
gpt_response, usage = get_responses(prompts, model) | |
output = extract_responses(gpt_response) | |
paper["body"][section] = output | |
tex_file = save_to_path + f"{section}.tex" | |
if section == "abstract": | |
with open(tex_file, "w") as f: | |
f.write(r"\begin{abstract}") | |
with open(tex_file, "a") as f: | |
f.write(output) | |
with open(tex_file, "a") as f: | |
f.write(r"\end{abstract}") | |
else: | |
with open(tex_file, "w") as f: | |
f.write(f"\section{{{section}}}\n") | |
with open(tex_file, "a") as f: | |
f.write(output) | |
time.sleep(5) | |
print(f"{section} has been generated. Saved to {tex_file}.") | |
return usage | |
def generate_draft(title, description="", template="ICLR2022", model="gpt-4"): | |
""" | |
The main pipeline of generating a paper. | |
1. Copy everything to the output folder. | |
2. Create references. | |
3. Generate each section using `pipeline`. | |
4. Post-processing: check common errors, fill the title, ... | |
""" | |
paper = {} | |
paper_body = {} | |
# Create a copy in the outputs folder. | |
now = datetime.datetime.now() | |
target_name = now.strftime("outputs_%Y%m%d_%H%M%S") | |
source_folder = f"latex_templates/{template}" | |
destination_folder = f"outputs/{target_name}" | |
shutil.copytree(source_folder, destination_folder) | |
bibtex_path = destination_folder + "/ref.bib" | |
save_to_path = destination_folder +"/" | |
replace_title(save_to_path, title) | |
logging.basicConfig( level=logging.INFO, filename=save_to_path+"generation.log") | |
# Generate keywords and references | |
print("Initialize the paper information ...") | |
prompts = generate_keywords_prompts(title, description) | |
gpt_response, usage = get_responses(prompts, model) | |
keywords = extract_keywords(gpt_response) | |
log_usage(usage, "keywords") | |
ref = References(load_papers = "") | |
ref.collect_papers(keywords, method="arxiv") | |
all_paper_ids = ref.to_bibtex(bibtex_path) #todo: this will used to check if all citations are in this list | |
print(f"The paper information has been initialized. References are saved to {bibtex_path}.") | |
paper["title"] = title | |
paper["description"] = description | |
paper["references"] = ref.to_prompts() # to_prompts(top_papers) | |
paper["body"] = paper_body | |
paper["bibtex"] = bibtex_path | |
print("Generating figures ...") | |
prompts = generate_experiments_prompts(paper) | |
gpt_response, usage = get_responses(prompts, model) | |
list_of_methods = list(extract_json(gpt_response)) | |
log_usage(usage, "figures") | |
generate_random_figures(list_of_methods, save_to_path + "comparison.png") | |
for section in ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]: | |
try: | |
usage = pipeline(paper, section, save_to_path, model=model) | |
log_usage(usage, section) | |
except Exception as e: | |
print(f"Failed to generate {section} due to the error: {e}") | |
print(f"The paper {title} has been generated. Saved to {save_to_path}.") | |
return make_archive(save_to_path, save_to_path+"output.zip") | |
if __name__ == "__main__": | |
# title = "Training Adversarial Generative Neural Network with Adaptive Dropout Rate" | |
title = "Playing Atari Game with Deep Reinforcement Learning" | |
description = "" | |
template = "ICLR2022" | |
model = "gpt-4" | |
# model = "gpt-3.5-turbo" | |
generate_draft(title, description, template, model) | |