auto-draft / auto_draft.py
sc_ma
Add webui (testing).
8aec19e
raw
history blame
5.45 kB
from utils.references import References
from utils.prompts import generate_paper_prompts, generate_keywords_prompts, generate_experiments_prompts
from utils.gpt_interaction import get_responses, extract_responses, extract_keywords, extract_json
from utils.tex_processing import replace_title
from utils.figures import generate_random_figures
import datetime
import shutil
import time
import logging
import os
TOTAL_TOKENS = 0
TOTAL_PROMPTS_TOKENS = 0
TOTAL_COMPLETION_TOKENS = 0
def make_archive(source, destination):
base = os.path.basename(destination)
name = base.split('.')[0]
format = base.split('.')[1]
archive_from = os.path.dirname(source)
archive_to = os.path.basename(source.strip(os.sep))
shutil.make_archive(name, format, archive_from, archive_to)
shutil.move('%s.%s'%(name,format), destination)
return destination
def log_usage(usage, generating_target, print_out=True):
global TOTAL_TOKENS
global TOTAL_PROMPTS_TOKENS
global TOTAL_COMPLETION_TOKENS
prompts_tokens = usage['prompt_tokens']
completion_tokens = usage['completion_tokens']
total_tokens = usage['total_tokens']
TOTAL_TOKENS += total_tokens
TOTAL_PROMPTS_TOKENS += prompts_tokens
TOTAL_COMPLETION_TOKENS += completion_tokens
message = f"For generating {generating_target}, {total_tokens} tokens have been used ({prompts_tokens} for prompts; {completion_tokens} for completion). " \
f"{TOTAL_TOKENS} tokens have been used in total."
if print_out:
print(message)
logging.info(message)
def pipeline(paper, section, save_to_path, model):
"""
The main pipeline of generating a section.
1. Generate prompts.
2. Get responses from AI assistant.
3. Extract the section text.
4. Save the text to .tex file.
:return usage
"""
print(f"Generating {section}...")
prompts = generate_paper_prompts(paper, section)
gpt_response, usage = get_responses(prompts, model)
output = extract_responses(gpt_response)
paper["body"][section] = output
tex_file = save_to_path + f"{section}.tex"
if section == "abstract":
with open(tex_file, "w") as f:
f.write(r"\begin{abstract}")
with open(tex_file, "a") as f:
f.write(output)
with open(tex_file, "a") as f:
f.write(r"\end{abstract}")
else:
with open(tex_file, "w") as f:
f.write(f"\section{{{section}}}\n")
with open(tex_file, "a") as f:
f.write(output)
time.sleep(5)
print(f"{section} has been generated. Saved to {tex_file}.")
return usage
def generate_draft(title, description="", template="ICLR2022", model="gpt-4"):
"""
The main pipeline of generating a paper.
1. Copy everything to the output folder.
2. Create references.
3. Generate each section using `pipeline`.
4. Post-processing: check common errors, fill the title, ...
"""
paper = {}
paper_body = {}
# Create a copy in the outputs folder.
now = datetime.datetime.now()
target_name = now.strftime("outputs_%Y%m%d_%H%M%S")
source_folder = f"latex_templates/{template}"
destination_folder = f"outputs/{target_name}"
shutil.copytree(source_folder, destination_folder)
bibtex_path = destination_folder + "/ref.bib"
save_to_path = destination_folder +"/"
replace_title(save_to_path, title)
logging.basicConfig( level=logging.INFO, filename=save_to_path+"generation.log")
# Generate keywords and references
print("Initialize the paper information ...")
prompts = generate_keywords_prompts(title, description)
gpt_response, usage = get_responses(prompts, model)
keywords = extract_keywords(gpt_response)
log_usage(usage, "keywords")
ref = References(load_papers = "")
ref.collect_papers(keywords, method="arxiv")
all_paper_ids = ref.to_bibtex(bibtex_path) #todo: this will used to check if all citations are in this list
print(f"The paper information has been initialized. References are saved to {bibtex_path}.")
paper["title"] = title
paper["description"] = description
paper["references"] = ref.to_prompts() # to_prompts(top_papers)
paper["body"] = paper_body
paper["bibtex"] = bibtex_path
print("Generating figures ...")
prompts = generate_experiments_prompts(paper)
gpt_response, usage = get_responses(prompts, model)
list_of_methods = list(extract_json(gpt_response))
log_usage(usage, "figures")
generate_random_figures(list_of_methods, save_to_path + "comparison.png")
for section in ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]:
try:
usage = pipeline(paper, section, save_to_path, model=model)
log_usage(usage, section)
except Exception as e:
print(f"Failed to generate {section} due to the error: {e}")
print(f"The paper {title} has been generated. Saved to {save_to_path}.")
return make_archive(save_to_path, save_to_path+"output.zip")
if __name__ == "__main__":
# title = "Training Adversarial Generative Neural Network with Adaptive Dropout Rate"
title = "Playing Atari Game with Deep Reinforcement Learning"
description = ""
template = "ICLR2022"
model = "gpt-4"
# model = "gpt-3.5-turbo"
generate_draft(title, description, template, model)