from utils.knowledge import Knowledge from langchain.vectorstores import FAISS from utils.file_operations import list_folders from huggingface_hub import snapshot_download import gradio as gr import os import json from models import EMBEDDINGS from utils.gpt_interaction import GPTModel from utils.prompts import SYSTEM import openai llm = GPTModel(model="gpt-3.5-turbo") openai.api_key = os.getenv("OPENAI_API_KEY") HF_TOKEN = os.getenv("HF_TOKEN") REPO_ID = os.getenv("KDB_REPO") if HF_TOKEN is not None and REPO_ID is not None: snapshot_download(REPO_ID, repo_type="dataset", local_dir="knowledge_databases/", local_dir_use_symlinks=False, token=HF_TOKEN) ALL_KDB = ["(None)"] + list_folders("knowledge_databases") ANNOUNCEMENT = """ # Evaluate the quality of retrieved date from the FAISS database Use this space test the performance of some pre-constructed vector databases hosted at `shaocongma/kdb`. To use this space for your own FAISS database, follow this instruction: 1. Duplicate this space. 2. Add the secret key `HF_TOKEN` with your own Huggingface User Access Token. 3. Create a Huggingface Dataset. Put your FAISS database to it. 4. Add the secret key `REPO_ID` as your dataset's address. """ AUTODRAFT = """ AutoDraft is a GPT-based project to generate an academic paper using the title and contributions. When generating specific sections, AutoDraft will query some necessary backgrounds in related fields from the pre-constructed vector database. """ def query_from_kdb(input, kdb, query_counts): if kdb == "(None)": return {"knowledge_database": "(None)", "input": input, "output": ""}, "" db_path = f"knowledge_databases/{kdb}" db_config_path = os.path.join(db_path, "db_meta.json") db_index_path = os.path.join(db_path, "faiss_index") if os.path.isdir(db_path): # load configuration file with open(db_config_path, "r", encoding="utf-8") as f: db_config = json.load(f) model_name = db_config["embedding_model"] embeddings = EMBEDDINGS[model_name] db = FAISS.load_local(db_index_path, embeddings) knowledge = Knowledge(db=db) knowledge.collect_knowledge({input: query_counts}, max_query=query_counts) domain_knowledge = knowledge.to_json() else: raise RuntimeError(f"Failed to query from FAISS.") return domain_knowledge, "" def query_from_kdb_llm(title, contributions, kdb, query_counts): if kdb == "(None)": return {"knowledge_database": "(None)", "title": title, "contributions": contributions, "output": ""}, "", {} db_path = f"knowledge_databases/{kdb}" db_config_path = os.path.join(db_path, "db_meta.json") db_index_path = os.path.join(db_path, "faiss_index") if os.path.isdir(db_path): # load configuration file with open(db_config_path, "r", encoding="utf-8") as f: db_config = json.load(f) model_name = db_config["embedding_model"] embeddings = EMBEDDINGS[model_name] db = FAISS.load_local(db_index_path, embeddings) knowledge = Knowledge(db=db) prompts = f"Title: {title}\n Contributions: {contributions}" preliminaries_kw, _ = llm(systems=SYSTEM["preliminaries"], prompts=prompts, return_json=True) knowledge.collect_knowledge(preliminaries_kw, max_query=query_counts) domain_knowledge = knowledge.to_json() else: raise RuntimeError(f"Failed to query from FAISS.") return domain_knowledge, "", preliminaries_kw with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Markdown(ANNOUNCEMENT) kdb_dropdown = gr.Dropdown(choices=ALL_KDB, value="(None)", label="Knowledge Databases", info="Pre-defined knowledge databases utilized to aid in the generation of academic writing content. " "Hosted at `shaocongma/kdb`.") with gr.Tab("User's Input"): user_input = gr.Textbox(label="Input", info="Input anything you like to test what will be retrived from the vector database.") with gr.Row(): button_clear = gr.Button("Clear") button_retrieval = gr.Button("Retrieve", variant="primary") with gr.Tab("AutoDraft"): gr.Markdown(AUTODRAFT) title_input = gr.Textbox(label="Title") contribution_input = gr.Textbox(label="Contributions", lines=5) with gr.Row(): button_clear_2 = gr.Button("Clear") button_retrieval_2 = gr.Button("Retrieve", variant="primary") with gr.Accordion("Advanced Setting", open=False): query_counts_slider = gr.Slider(minimum=1, maximum=50, value=10, step=1, interactive=True, label="QUERY_COUNTS", info="How many contents will be retrieved from the vector database.") with gr.Column(): retrieval_output = gr.JSON(label="Output") llm_kws = gr.JSON(label="Keywords generated by LLM") button_retrieval.click(fn=query_from_kdb, inputs=[user_input, kdb_dropdown, query_counts_slider], outputs=[retrieval_output, user_input]) button_retrieval_2.click(fn=query_from_kdb_llm, inputs=[title_input, contribution_input, kdb_dropdown, query_counts_slider], outputs=[retrieval_output, user_input, llm_kws]) demo.queue(concurrency_count=1, max_size=5, api_open=False) demo.launch(show_error=True)