Spaces:
Runtime error
Runtime error
from typing import Dict, Union | |
import requests | |
from huggingface_hub import HfApi, ModelFilter | |
AUTOTRAIN_TASK_TO_HUB_TASK = { | |
"binary_classification": "text-classification", | |
"multi_class_classification": "text-classification", | |
# "multi_label_classification": "text-classification", # Not fully supported in AutoTrain | |
"entity_extraction": "token-classification", | |
"extractive_question_answering": "question-answering", | |
"translation": "translation", | |
"summarization": "summarization", | |
# "single_column_regression": 10, | |
} | |
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()} | |
api = HfApi() | |
def get_auth_headers(token: str, prefix: str = "autonlp"): | |
return {"Authorization": f"{prefix} {token}"} | |
def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response: | |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached""" | |
try: | |
response = requests.post( | |
url=domain + path, | |
json=payload, | |
headers=get_auth_headers(token=token), | |
allow_redirects=True, | |
params=params, | |
) | |
except requests.exceptions.ConnectionError: | |
print("β Failed to reach AutoNLP API, check your internet connection") | |
response.raise_for_status() | |
return response | |
def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response: | |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached""" | |
try: | |
response = requests.get( | |
url=domain + path, | |
headers=get_auth_headers(token=token), | |
allow_redirects=True, | |
params=params, | |
) | |
except requests.exceptions.ConnectionError: | |
print("β Failed to reach AutoNLP API, check your internet connection") | |
response.raise_for_status() | |
return response | |
def get_metadata(dataset_name: str) -> Union[Dict, None]: | |
data = requests.get(f"https://huggingface.co/api/datasets/{dataset_name}").json() | |
if data["cardData"] is not None and "train-eval-index" in data["cardData"].keys(): | |
return data["cardData"]["train-eval-index"] | |
else: | |
return None | |
def get_compatible_models(task, dataset_name): | |
# TODO: relax filter on PyTorch models once supported in AutoTrain | |
filt = ModelFilter( | |
task=AUTOTRAIN_TASK_TO_HUB_TASK[task], | |
trained_dataset=dataset_name, | |
library=["transformers", "pytorch"], | |
) | |
compatible_models = api.list_models(filter=filt) | |
return sorted([model.modelId for model in compatible_models]) | |
def get_key(col_mapping, val): | |
for key, value in col_mapping.items(): | |
if val == value: | |
return key | |
return "key doesn't exist" | |
def format_col_mapping(col_mapping: dict) -> dict: | |
for k, v in col_mapping["answers"].items(): | |
col_mapping[f"answers.{k}"] = f"answers.{v}" | |
del col_mapping["answers"] | |
return col_mapping | |