model-evaluator / app.py
lewtun's picture
lewtun HF staff
Add all NLP tasks
54f6b18
raw
history blame
10.7 kB
import os
import uuid
from pathlib import Path
import pandas as pd
import streamlit as st
from datasets import get_dataset_config_names
from dotenv import load_dotenv
from huggingface_hub import list_datasets
from utils import get_compatible_models, get_metadata, http_get, http_post
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
TASK_TO_ID = {
"binary_classification": 1,
"multi_class_classification": 2,
# "multi_label_classification": 3, # Not fully supported in AutoTrain
"entity_extraction": 4,
"extractive_question_answering": 5,
"translation": 6,
"summarization": 8,
# "single_column_regression": 10,
}
###########
### APP ###
###########
st.title("Evaluation as a Service")
st.markdown(
"""
Welcome to Hugging Face's Evaluation as a Service! This application allows
you to evaluate any πŸ€— Transformers model with a dataset on the Hub. Please
select the dataset and configuration below. The results of your evaluation
will be displayed on the public leaderboard
[here](https://huggingface.co/spaces/autoevaluate/leaderboards).
"""
)
all_datasets = [d.id for d in list_datasets()]
query_params = st.experimental_get_query_params()
default_dataset = all_datasets[0]
if "dataset" in query_params:
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets:
default_dataset = query_params["dataset"][0]
selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset))
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
# TODO: In general this will be a list of multiple configs => need to generalise logic here
metadata = get_metadata(selected_dataset)
if metadata is None:
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
with st.expander("Advanced configuration"):
## Select task
selected_task = st.selectbox("Select a task", list(TASK_TO_ID.keys()))
### Select config
configs = get_dataset_config_names(selected_dataset)
selected_config = st.selectbox("Select a config", configs)
## Select splits
splits_resp = http_get(path="/splits", domain=DATASETS_PREVIEW_API, params={"dataset": selected_dataset})
if splits_resp.status_code == 200:
split_names = []
all_splits = splits_resp.json()
for split in all_splits["splits"]:
if split["config"] == selected_config:
split_names.append(split["split"])
selected_split = st.selectbox("Select a split", split_names) # , index=split_names.index(eval_split))
## Show columns
rows_resp = http_get(
path="/rows",
domain="https://datasets-preview.huggingface.tech",
params={"dataset": selected_dataset, "config": selected_config, "split": selected_split},
).json()
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
# splits = metadata[0]["splits"]
# split_names = list(splits.values())
# eval_split = splits.get("eval_split", split_names[0])
# selected_split = st.selectbox("Select a split", split_names, index=split_names.index(eval_split))
# TODO: add a function to handle the mapping task <--> column mapping
# col_mapping = metadata[0]["col_mapping"]
# col_names = list(col_mapping.keys())
st.markdown("**Map your data columns**")
col1, col2 = st.columns(2)
# TODO: find a better way to layout these items
# TODO: propagate this information to payload
# TODO: make it task specific
col_mapping = {}
if selected_task in ["binary_classification", "multi_class_classification"]:
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox("This column should contain the text you want to classify", col_names)
target_col = st.selectbox(
"This column should contain the labels you want to assign to the text", col_names
)
col_mapping[text_col] = "text"
col_mapping[target_col] = "target"
elif selected_task == "entity_extraction":
with col1:
st.markdown("`tokens` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`tags` column")
with col2:
tokens_col = st.selectbox(
"This column should contain the parts of the text (as an array of tokens) you want to assign labels to",
col_names,
)
tags_col = st.selectbox(
"This column should contain the labels to associate to each part of the text", col_names
)
col_mapping[tokens_col] = "tokens"
col_mapping[tags_col] = "tags"
elif selected_task == "translation":
with col1:
st.markdown("`source` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox("This column should contain the text you want to translate", col_names)
target_col = st.selectbox(
"This column should contain an example translation of the source text", col_names
)
col_mapping[text_col] = "source"
col_mapping[target_col] = "target"
elif selected_task == "summarization":
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox("This column should contain the text you want to summarize", col_names)
target_col = st.selectbox("This column should contain an example summarization of the text", col_names)
col_mapping[text_col] = "text"
col_mapping[target_col] = "target"
elif selected_task == "extractive_question_answering":
with col1:
st.markdown("`context` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`question` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`answers.text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`answers.answer_start` column")
with col2:
context_col = st.selectbox("This column should contain the question's context", col_names)
question_col = st.selectbox(
"This column should contain the question to be answered, given the context", col_names
)
answers_text_col = st.selectbox(
"This column should contain example answers to the question, extracted from the context", col_names
)
answers_start_col = st.selectbox(
"This column should contain the indices in the context of the first character of each answers.text",
col_names,
)
col_mapping[context_col] = "context"
col_mapping[question_col] = "question"
col_mapping[answers_text_col] = "answers.text"
col_mapping[answers_start_col] = "answers.answer_start"
with st.form(key="form"):
compatible_models = get_compatible_models(selected_task, selected_dataset)
selected_models = st.multiselect(
"Select the models you wish to evaluate", compatible_models
) # , compatible_models[0])
submit_button = st.form_submit_button("Make submission")
if submit_button:
project_id = str(uuid.uuid4())[:3]
payload = {
"username": AUTOTRAIN_USERNAME,
"proj_name": f"my-eval-project-{project_id}",
"task": TASK_TO_ID[selected_task],
"config": {
"language": "en",
"max_models": 5,
"instance": {
"provider": "aws",
"instance_type": "ml.g4dn.4xlarge",
"max_runtime_seconds": 172800,
"num_instances": 1,
"disk_size_gb": 150,
},
"evaluation": {
"metrics": [],
"models": selected_models,
},
},
}
print(f"Payload: {payload}")
project_json_resp = http_post(
path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
).json()
print(project_json_resp)
if project_json_resp["created"]:
payload = {
"split": 4, # use "auto" split choice in AutoTrain
"col_mapping": col_mapping,
"load_config": {"max_size_bytes": 0, "shuffle": False},
}
data_json_resp = http_post(
path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
payload=payload,
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
params={"type": "dataset", "config_name": selected_config, "split_name": selected_split},
).json()
print(data_json_resp)
if data_json_resp["download_status"] == 1:
train_json_resp = http_get(
path=f"/projects/{project_json_resp['id']}/data/start_process",
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
).json()
print(train_json_resp)
if train_json_resp["success"]:
st.success(f"βœ… Successfully submitted evaluation job with project ID {project_id}")
st.markdown(
f"""
Evaluation takes appoximately 1 hour to complete, so grab a β˜• or 🍡 while you wait:
* πŸ“Š Click [here](https://huggingface.co/spaces/huggingface/leaderboards) to view the results from your submission
"""
)
else:
st.error("πŸ™ˆ Oh noes, there was an error submitting your submission!")