Spaces:
Runtime error
Runtime error
import inspect | |
from typing import Dict, List, Union | |
import jsonlines | |
import requests | |
import streamlit as st | |
from evaluate import load | |
from huggingface_hub import HfApi, ModelFilter, Repository, dataset_info, list_metrics | |
from tqdm import tqdm | |
AUTOTRAIN_TASK_TO_HUB_TASK = { | |
"binary_classification": "text-classification", | |
"multi_class_classification": "text-classification", | |
"entity_extraction": "token-classification", | |
"extractive_question_answering": "question-answering", | |
"translation": "translation", | |
"summarization": "summarization", | |
"image_binary_classification": "image-classification", | |
"image_multi_class_classification": "image-classification", | |
} | |
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()} | |
LOGS_REPO = "evaluation-job-logs" | |
def get_auth_headers(token: str, prefix: str = "autonlp"): | |
return {"Authorization": f"{prefix} {token}"} | |
def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response: | |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached""" | |
try: | |
response = requests.post( | |
url=domain + path, | |
json=payload, | |
headers=get_auth_headers(token=token), | |
allow_redirects=True, | |
params=params, | |
) | |
except requests.exceptions.ConnectionError: | |
print("β Failed to reach AutoNLP API, check your internet connection") | |
response.raise_for_status() | |
return response | |
def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response: | |
"""HTTP POST request to `path`, raises UnreachableAPIError if the API cannot be reached""" | |
try: | |
response = requests.get( | |
url=domain + path, | |
headers=get_auth_headers(token=token), | |
allow_redirects=True, | |
params=params, | |
) | |
except requests.exceptions.ConnectionError: | |
print(f"β Failed to reach {path}, check your internet connection") | |
response.raise_for_status() | |
return response | |
def get_metadata(dataset_name: str, token: str) -> Union[Dict, None]: | |
data = dataset_info(dataset_name, token=token) | |
if data.cardData is not None and "train-eval-index" in data.cardData.keys(): | |
return data.cardData["train-eval-index"] | |
else: | |
return None | |
def get_compatible_models(task: str, dataset_ids: List[str]) -> List[str]: | |
""" | |
Returns all model IDs that are compatible with the given task and dataset names. | |
Args: | |
task (`str`): The task to search for. | |
dataset_names (`List[str]`): A list of dataset names to search for. | |
Returns: | |
A list of model IDs, sorted alphabetically. | |
""" | |
compatible_models = [] | |
# Include models trained on SQuAD datasets, since these can be evaluated on | |
# other SQuAD-like datasets | |
if task == "extractive_question_answering": | |
dataset_ids.extend(["squad", "squad_v2"]) | |
# TODO: relax filter on PyTorch models if TensorFlow supported in AutoTrain | |
for dataset_id in dataset_ids: | |
model_filter = ModelFilter( | |
task=AUTOTRAIN_TASK_TO_HUB_TASK[task], | |
trained_dataset=dataset_id, | |
library=["transformers", "pytorch"], | |
) | |
compatible_models.extend(HfApi().list_models(filter=model_filter)) | |
return sorted(set([model.modelId for model in compatible_models])) | |
def get_key(col_mapping, val): | |
for key, value in col_mapping.items(): | |
if val == value: | |
return key | |
return "key doesn't exist" | |
def format_col_mapping(col_mapping: dict) -> dict: | |
for k, v in col_mapping["answers"].items(): | |
col_mapping[f"answers.{k}"] = f"answers.{v}" | |
del col_mapping["answers"] | |
return col_mapping | |
def commit_evaluation_log(evaluation_log, hf_access_token=None): | |
logs_repo_url = f"https://huggingface.co/datasets/autoevaluate/{LOGS_REPO}" | |
logs_repo = Repository( | |
local_dir=LOGS_REPO, | |
clone_from=logs_repo_url, | |
repo_type="dataset", | |
private=True, | |
use_auth_token=hf_access_token, | |
) | |
logs_repo.git_pull() | |
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl") as r: | |
lines = [] | |
for obj in r: | |
lines.append(obj) | |
lines.append(evaluation_log) | |
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl", mode="w") as writer: | |
for job in lines: | |
writer.write(job) | |
logs_repo.push_to_hub( | |
commit_message=f"Evaluation submitted with project name {evaluation_log['payload']['proj_name']}" | |
) | |
print("INFO -- Pushed evaluation logs to the Hub") | |
def get_supported_metrics(): | |
"""Helper function to get all metrics compatible with evaluation service. | |
Requires all metric dependencies installed in the same environment, so wait until | |
https://github.com/huggingface/evaluate/issues/138 is resolved before using this. | |
""" | |
metrics = [metric.id for metric in list_metrics()] | |
supported_metrics = [] | |
for metric in tqdm(metrics): | |
# TODO: this currently requires all metric dependencies to be installed | |
# in the same environment. Refactor to avoid needing to actually load | |
# the metric. | |
try: | |
print(f"INFO -- Attempting to load metric: {metric}") | |
metric_func = load(metric) | |
except Exception as e: | |
print(e) | |
print("WARNING -- Skipping the following metric, which cannot load:", metric) | |
continue | |
argspec = inspect.getfullargspec(metric_func.compute) | |
if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs: | |
# We require that "references" and "predictions" are arguments | |
# to the metric function. We also require that the other arguments | |
# besides "references" and "predictions" have defaults and so do not | |
# need to be specified explicitly. | |
defaults = True | |
for key, value in argspec.kwonlydefaults.items(): | |
if key not in ("references", "predictions"): | |
if value is None: | |
defaults = False | |
break | |
if defaults: | |
supported_metrics.append(metric) | |
return supported_metrics | |