Spaces:
Runtime error
Runtime error
Enable selection from all datasets
Browse files
app.py
CHANGED
@@ -2,9 +2,11 @@ import os
|
|
2 |
from pathlib import Path
|
3 |
|
4 |
import streamlit as st
|
|
|
5 |
from dotenv import load_dotenv
|
|
|
6 |
|
7 |
-
from utils import get_compatible_models, get_metadata, http_post
|
8 |
|
9 |
if Path(".env").is_file():
|
10 |
load_dotenv(".env")
|
@@ -12,6 +14,7 @@ if Path(".env").is_file():
|
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
|
14 |
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
|
|
|
15 |
|
16 |
|
17 |
TASK_TO_ID = {
|
@@ -25,8 +28,19 @@ TASK_TO_ID = {
|
|
25 |
"single_column_regression": 10,
|
26 |
}
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# TODO: remove this hardcorded logic and accept any dataset on the Hub
|
29 |
-
DATASETS_TO_EVALUATE = ["emotion", "conll2003", "imdb", "squad", "xsum", "ncbi_disease", "go_emotions"]
|
30 |
|
31 |
###########
|
32 |
### APP ###
|
@@ -42,28 +56,59 @@ st.markdown(
|
|
42 |
"""
|
43 |
)
|
44 |
|
45 |
-
|
|
|
|
|
46 |
|
47 |
# TODO: remove this step once we select real datasets
|
48 |
# Strip out original dataset name
|
49 |
-
original_dataset_name = dataset_name.split("/")[-1].split("__")[-1]
|
50 |
|
51 |
# In general this will be a list of multiple configs => need to generalise logic here
|
52 |
-
metadata = get_metadata(
|
|
|
|
|
|
|
53 |
|
54 |
with st.expander("Advanced configuration"):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# TODO: add a function to handle the mapping task <--> column mapping
|
65 |
-
col_mapping = metadata[0]["col_mapping"]
|
66 |
-
col_names = list(col_mapping.keys())
|
67 |
|
68 |
# TODO: figure out how to get all dataset column names (i.e. features) without download dataset itself
|
69 |
st.markdown("**Map your data columns**")
|
@@ -71,6 +116,7 @@ with st.expander("Advanced configuration"):
|
|
71 |
|
72 |
# TODO: find a better way to layout these items
|
73 |
# TODO: propagate this information to payload
|
|
|
74 |
with col1:
|
75 |
st.markdown("`text` column")
|
76 |
st.text("")
|
@@ -84,34 +130,80 @@ with st.expander("Advanced configuration"):
|
|
84 |
|
85 |
with st.form(key="form"):
|
86 |
|
87 |
-
compatible_models = get_compatible_models(
|
88 |
|
89 |
-
selected_models = st.multiselect(
|
|
|
|
|
|
|
90 |
|
91 |
submit_button = st.form_submit_button("Make submission")
|
92 |
|
93 |
-
if submit_button:
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from pathlib import Path
|
3 |
|
4 |
import streamlit as st
|
5 |
+
from datasets import get_dataset_config_names
|
6 |
from dotenv import load_dotenv
|
7 |
+
from huggingface_hub import list_datasets
|
8 |
|
9 |
+
from utils import get_compatible_models, get_metadata, http_get, http_post
|
10 |
|
11 |
if Path(".env").is_file():
|
12 |
load_dotenv(".env")
|
|
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
|
16 |
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
|
17 |
+
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
|
18 |
|
19 |
|
20 |
TASK_TO_ID = {
|
|
|
28 |
"single_column_regression": 10,
|
29 |
}
|
30 |
|
31 |
+
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
32 |
+
"binary_classification": "text-classification",
|
33 |
+
"multi_class_classification": "text-classification",
|
34 |
+
"multi_label_classification": "text-classification",
|
35 |
+
"entity_extraction": "token-classification",
|
36 |
+
"extractive_question_answering": "question-answering",
|
37 |
+
"translation": "translation",
|
38 |
+
"summarization": "summarization",
|
39 |
+
"single_column_regression": 10,
|
40 |
+
}
|
41 |
+
|
42 |
# TODO: remove this hardcorded logic and accept any dataset on the Hub
|
43 |
+
# DATASETS_TO_EVALUATE = ["emotion", "conll2003", "imdb", "squad", "xsum", "ncbi_disease", "go_emotions"]
|
44 |
|
45 |
###########
|
46 |
### APP ###
|
|
|
56 |
"""
|
57 |
)
|
58 |
|
59 |
+
all_datasets = [d.id for d in list_datasets()]
|
60 |
+
selected_dataset = st.selectbox("Select a dataset", all_datasets)
|
61 |
+
print(f"Dataset name: {selected_dataset}")
|
62 |
|
63 |
# TODO: remove this step once we select real datasets
|
64 |
# Strip out original dataset name
|
65 |
+
# original_dataset_name = dataset_name.split("/")[-1].split("__")[-1]
|
66 |
|
67 |
# In general this will be a list of multiple configs => need to generalise logic here
|
68 |
+
metadata = get_metadata(selected_dataset)
|
69 |
+
print(metadata)
|
70 |
+
if metadata is None:
|
71 |
+
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
72 |
|
73 |
with st.expander("Advanced configuration"):
|
74 |
+
## Select task
|
75 |
+
selected_task = st.selectbox("Select a task", list(AUTOTRAIN_TASK_TO_HUB_TASK.values()))
|
76 |
+
### Select config
|
77 |
+
configs = get_dataset_config_names(selected_dataset)
|
78 |
+
selected_config = st.selectbox("Select a config", configs)
|
79 |
+
|
80 |
+
## Select splits
|
81 |
+
splits_resp = http_get(path="/splits", domain=DATASETS_PREVIEW_API, params={"dataset": selected_dataset})
|
82 |
+
if splits_resp.status_code == 200:
|
83 |
+
split_names = []
|
84 |
+
all_splits = splits_resp.json()
|
85 |
+
print(all_splits)
|
86 |
+
for split in all_splits["splits"]:
|
87 |
+
print(selected_config)
|
88 |
+
if split["config"] == selected_config:
|
89 |
+
split_names.append(split["split"])
|
90 |
+
|
91 |
+
selected_split = st.selectbox("Select a split", split_names) # , index=split_names.index(eval_split))
|
92 |
+
|
93 |
+
## Show columns
|
94 |
+
rows_resp = http_get(
|
95 |
+
path="/rows",
|
96 |
+
domain="https://datasets-preview.huggingface.tech",
|
97 |
+
params={"dataset": selected_dataset, "config": selected_config, "split": selected_split},
|
98 |
+
).json()
|
99 |
+
columns = rows_resp["columns"]
|
100 |
+
col_names = []
|
101 |
+
for c in columns:
|
102 |
+
col_names.append(c["column"]["name"])
|
103 |
+
# splits = metadata[0]["splits"]
|
104 |
+
# split_names = list(splits.values())
|
105 |
+
# eval_split = splits.get("eval_split", split_names[0])
|
106 |
+
|
107 |
+
# selected_split = st.selectbox("Select a split", split_names, index=split_names.index(eval_split))
|
108 |
|
109 |
# TODO: add a function to handle the mapping task <--> column mapping
|
110 |
+
# col_mapping = metadata[0]["col_mapping"]
|
111 |
+
# col_names = list(col_mapping.keys())
|
112 |
|
113 |
# TODO: figure out how to get all dataset column names (i.e. features) without download dataset itself
|
114 |
st.markdown("**Map your data columns**")
|
|
|
116 |
|
117 |
# TODO: find a better way to layout these items
|
118 |
# TODO: propagate this information to payload
|
119 |
+
# TODO: make it task specific
|
120 |
with col1:
|
121 |
st.markdown("`text` column")
|
122 |
st.text("")
|
|
|
130 |
|
131 |
with st.form(key="form"):
|
132 |
|
133 |
+
compatible_models = get_compatible_models(selected_task, selected_dataset)
|
134 |
|
135 |
+
selected_models = st.multiselect(
|
136 |
+
"Select the models you wish to evaluate", compatible_models
|
137 |
+
) # , compatible_models[0])
|
138 |
+
print(selected_models)
|
139 |
|
140 |
submit_button = st.form_submit_button("Make submission")
|
141 |
|
142 |
+
# if submit_button:
|
143 |
+
# for model in selected_models:
|
144 |
+
# payload = {
|
145 |
+
# "username": AUTOTRAIN_USERNAME,
|
146 |
+
# "task": TASK_TO_ID[metadata[0]["task_id"]],
|
147 |
+
# "model": model,
|
148 |
+
# "col_mapping": metadata[0]["col_mapping"],
|
149 |
+
# "split": selected_split,
|
150 |
+
# "dataset": original_dataset_name,
|
151 |
+
# "config": selected_config,
|
152 |
+
# }
|
153 |
+
# json_resp = http_post(
|
154 |
+
# path="/evaluate/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
155 |
+
# ).json()
|
156 |
+
# if json_resp["status"] == 1:
|
157 |
+
# st.success(f"β
Successfully submitted model {model} for evaluation with job ID {json_resp['id']}")
|
158 |
+
# st.markdown(
|
159 |
+
# f"""
|
160 |
+
# Evaluation takes appoximately 1 hour to complete, so grab a β or π΅ while you wait:
|
161 |
+
|
162 |
+
# * π Click [here](https://huggingface.co/spaces/huggingface/leaderboards) to view the results from your submission
|
163 |
+
# """
|
164 |
+
# )
|
165 |
+
# else:
|
166 |
+
# st.error("π Oh noes, there was an error submitting your submission!")
|
167 |
+
|
168 |
+
# st.write("Creating project!")
|
169 |
+
# payload = {
|
170 |
+
# "username": AUTOTRAIN_USERNAME,
|
171 |
+
# "proj_name": "my-eval-project-1",
|
172 |
+
# "task": TASK_TO_ID[metadata[0]["task_id"]],
|
173 |
+
# "config": {
|
174 |
+
# "language": "en",
|
175 |
+
# "max_models": 5,
|
176 |
+
# "instance": {
|
177 |
+
# "provider": "aws",
|
178 |
+
# "instance_type": "ml.g4dn.4xlarge",
|
179 |
+
# "max_runtime_seconds": 172800,
|
180 |
+
# "num_instances": 1,
|
181 |
+
# "disk_size_gb": 150,
|
182 |
+
# },
|
183 |
+
# },
|
184 |
+
# }
|
185 |
+
# json_resp = http_post(
|
186 |
+
# path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
187 |
+
# ).json()
|
188 |
+
# # print(json_resp)
|
189 |
+
|
190 |
+
# # st.write("Uploading data")
|
191 |
+
# payload = {
|
192 |
+
# "split": 4,
|
193 |
+
# "col_mapping": metadata[0]["col_mapping"],
|
194 |
+
# "load_config": {"max_size_bytes": 0, "shuffle": False},
|
195 |
+
# }
|
196 |
+
# json_resp = http_post(
|
197 |
+
# path="/projects/522/data/emotion",
|
198 |
+
# payload=payload,
|
199 |
+
# token=HF_TOKEN,
|
200 |
+
# domain=AUTOTRAIN_BACKEND_API,
|
201 |
+
# params={"type": "dataset", "config_name": "default", "split_name": "train"},
|
202 |
+
# ).json()
|
203 |
+
# print(json_resp)
|
204 |
+
|
205 |
+
# st.write("Training")
|
206 |
+
# json_resp = http_get(
|
207 |
+
# path="/projects/522/data/start_process", token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
208 |
+
# ).json()
|
209 |
+
# print(json_resp)
|
utils.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import requests
|
2 |
from huggingface_hub import DatasetFilter, HfApi, ModelFilter
|
3 |
|
@@ -8,16 +10,23 @@ def get_auth_headers(token: str, prefix: str = "autonlp"):
|
|
8 |
return {"Authorization": f"{prefix} {token}"}
|
9 |
|
10 |
|
11 |
-
def http_post(
|
12 |
-
path: str,
|
13 |
-
token: str,
|
14 |
-
payload=None,
|
15 |
-
domain: str = None,
|
16 |
-
) -> requests.Response:
|
17 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
18 |
try:
|
19 |
response = requests.post(
|
20 |
-
url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
except requests.exceptions.ConnectionError:
|
23 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
@@ -25,10 +34,13 @@ def http_post(
|
|
25 |
return response
|
26 |
|
27 |
|
28 |
-
def get_metadata(dataset_name):
|
29 |
filt = DatasetFilter(dataset_name=dataset_name)
|
30 |
data = api.list_datasets(filter=filt, full=True)
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
def get_compatible_models(task, dataset_name):
|
|
|
1 |
+
from typing import Dict, Union
|
2 |
+
|
3 |
import requests
|
4 |
from huggingface_hub import DatasetFilter, HfApi, ModelFilter
|
5 |
|
|
|
10 |
return {"Authorization": f"{prefix} {token}"}
|
11 |
|
12 |
|
13 |
+
def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response:
|
|
|
|
|
|
|
|
|
|
|
14 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
15 |
try:
|
16 |
response = requests.post(
|
17 |
+
url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True, params=params
|
18 |
+
)
|
19 |
+
except requests.exceptions.ConnectionError:
|
20 |
+
print("β Failed to reach AutoNLP API, check your internet connection")
|
21 |
+
response.raise_for_status()
|
22 |
+
return response
|
23 |
+
|
24 |
+
|
25 |
+
def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response:
|
26 |
+
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
27 |
+
try:
|
28 |
+
response = requests.get(
|
29 |
+
url=domain + path, headers=get_auth_headers(token=token), allow_redirects=True, params=params
|
30 |
)
|
31 |
except requests.exceptions.ConnectionError:
|
32 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
|
34 |
return response
|
35 |
|
36 |
|
37 |
+
def get_metadata(dataset_name: str) -> Union[Dict, None]:
|
38 |
filt = DatasetFilter(dataset_name=dataset_name)
|
39 |
data = api.list_datasets(filter=filt, full=True)
|
40 |
+
if data[0].cardData is not None and "train-eval-index" in data[0].cardData.keys():
|
41 |
+
return data[0].cardData["train-eval-index"]
|
42 |
+
else:
|
43 |
+
return None
|
44 |
|
45 |
|
46 |
def get_compatible_models(task, dataset_name):
|