Spaces:
Runtime error
Runtime error
Merge pull request #5 from huggingface/use-dataset-backend
Browse files- .gitignore +2 -0
- app.py +204 -65
- requirements.txt +1 -1
- utils.py +38 -10
.gitignore
CHANGED
@@ -127,3 +127,5 @@ dmypy.json
|
|
127 |
|
128 |
# Pyre type checker
|
129 |
.pyre/
|
|
|
|
|
|
127 |
|
128 |
# Pyre type checker
|
129 |
.pyre/
|
130 |
+
|
131 |
+
scratch/
|
app.py
CHANGED
@@ -1,10 +1,14 @@
|
|
1 |
import os
|
|
|
2 |
from pathlib import Path
|
3 |
|
|
|
4 |
import streamlit as st
|
|
|
5 |
from dotenv import load_dotenv
|
|
|
6 |
|
7 |
-
from utils import get_compatible_models, get_metadata, http_post
|
8 |
|
9 |
if Path(".env").is_file():
|
10 |
load_dotenv(".env")
|
@@ -12,22 +16,19 @@ if Path(".env").is_file():
|
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
|
14 |
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
|
|
|
15 |
|
16 |
|
17 |
TASK_TO_ID = {
|
18 |
"binary_classification": 1,
|
19 |
"multi_class_classification": 2,
|
20 |
-
"multi_label_classification": 3,
|
21 |
"entity_extraction": 4,
|
22 |
"extractive_question_answering": 5,
|
23 |
"translation": 6,
|
24 |
"summarization": 8,
|
25 |
-
"single_column_regression": 10,
|
26 |
}
|
27 |
|
28 |
-
# TODO: remove this hardcorded logic and accept any dataset on the Hub
|
29 |
-
DATASETS_TO_EVALUATE = ["emotion", "conll2003", "imdb", "squad", "xsum", "ncbi_disease", "go_emotions"]
|
30 |
-
|
31 |
###########
|
32 |
### APP ###
|
33 |
###########
|
@@ -42,90 +43,228 @@ st.markdown(
|
|
42 |
"""
|
43 |
)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
query_params = st.experimental_get_query_params()
|
48 |
-
default_dataset =
|
49 |
if "dataset" in query_params:
|
50 |
-
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in
|
51 |
default_dataset = query_params["dataset"][0]
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
selectable_datasets,
|
56 |
-
index=selectable_datasets.index(default_dataset)
|
57 |
-
)
|
58 |
-
|
59 |
-
st.experimental_set_query_params(**{"dataset": [dataset]})
|
60 |
|
61 |
-
# TODO: remove this step once we select real datasets
|
62 |
-
# Strip out original dataset name
|
63 |
-
original_dataset_name = dataset_name.split("/")[-1].split("__")[-1]
|
64 |
|
65 |
-
# In general this will be a list of multiple configs => need to generalise logic here
|
66 |
-
metadata = get_metadata(
|
|
|
|
|
67 |
|
68 |
with st.expander("Advanced configuration"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
selected_split = st.selectbox("Select a split", split_names, index=split_names.index(eval_split))
|
77 |
|
78 |
# TODO: add a function to handle the mapping task <--> column mapping
|
79 |
-
col_mapping = metadata[0]["col_mapping"]
|
80 |
-
col_names = list(col_mapping.keys())
|
81 |
|
82 |
-
# TODO: figure out how to get all dataset column names (i.e. features) without download dataset itself
|
83 |
st.markdown("**Map your data columns**")
|
84 |
col1, col2 = st.columns(2)
|
85 |
|
86 |
# TODO: find a better way to layout these items
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
submit_button = st.form_submit_button("Make submission")
|
106 |
|
107 |
if submit_button:
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
payload = {
|
110 |
-
"
|
111 |
-
"
|
112 |
-
"
|
113 |
-
"col_mapping": metadata[0]["col_mapping"],
|
114 |
-
"split": selected_split,
|
115 |
-
"dataset": original_dataset_name,
|
116 |
-
"config": dataset_config,
|
117 |
}
|
118 |
-
|
119 |
-
path="/
|
|
|
|
|
|
|
|
|
120 |
).json()
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
f""
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import uuid
|
3 |
from pathlib import Path
|
4 |
|
5 |
+
import pandas as pd
|
6 |
import streamlit as st
|
7 |
+
from datasets import get_dataset_config_names
|
8 |
from dotenv import load_dotenv
|
9 |
+
from huggingface_hub import list_datasets
|
10 |
|
11 |
+
from utils import get_compatible_models, get_metadata, http_get, http_post
|
12 |
|
13 |
if Path(".env").is_file():
|
14 |
load_dotenv(".env")
|
|
|
16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
17 |
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
|
18 |
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
|
19 |
+
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
|
20 |
|
21 |
|
22 |
TASK_TO_ID = {
|
23 |
"binary_classification": 1,
|
24 |
"multi_class_classification": 2,
|
25 |
+
# "multi_label_classification": 3, # Not fully supported in AutoTrain
|
26 |
"entity_extraction": 4,
|
27 |
"extractive_question_answering": 5,
|
28 |
"translation": 6,
|
29 |
"summarization": 8,
|
|
|
30 |
}
|
31 |
|
|
|
|
|
|
|
32 |
###########
|
33 |
### APP ###
|
34 |
###########
|
|
|
43 |
"""
|
44 |
)
|
45 |
|
46 |
+
all_datasets = [d.id for d in list_datasets()]
|
|
|
47 |
query_params = st.experimental_get_query_params()
|
48 |
+
default_dataset = all_datasets[0]
|
49 |
if "dataset" in query_params:
|
50 |
+
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets:
|
51 |
default_dataset = query_params["dataset"][0]
|
52 |
|
53 |
+
selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset))
|
54 |
+
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
|
|
|
|
|
|
|
|
|
|
|
55 |
|
|
|
|
|
|
|
56 |
|
57 |
+
# TODO: In general this will be a list of multiple configs => need to generalise logic here
|
58 |
+
metadata = get_metadata(selected_dataset)
|
59 |
+
if metadata is None:
|
60 |
+
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
61 |
|
62 |
with st.expander("Advanced configuration"):
|
63 |
+
## Select task
|
64 |
+
selected_task = st.selectbox("Select a task", list(TASK_TO_ID.keys()))
|
65 |
+
### Select config
|
66 |
+
configs = get_dataset_config_names(selected_dataset)
|
67 |
+
selected_config = st.selectbox("Select a config", configs)
|
68 |
+
|
69 |
+
## Select splits
|
70 |
+
splits_resp = http_get(path="/splits", domain=DATASETS_PREVIEW_API, params={"dataset": selected_dataset})
|
71 |
+
if splits_resp.status_code == 200:
|
72 |
+
split_names = []
|
73 |
+
all_splits = splits_resp.json()
|
74 |
+
for split in all_splits["splits"]:
|
75 |
+
if split["config"] == selected_config:
|
76 |
+
split_names.append(split["split"])
|
77 |
|
78 |
+
selected_split = st.selectbox("Select a split", split_names) # , index=split_names.index(eval_split))
|
79 |
|
80 |
+
## Show columns
|
81 |
+
rows_resp = http_get(
|
82 |
+
path="/rows",
|
83 |
+
domain="https://datasets-preview.huggingface.tech",
|
84 |
+
params={"dataset": selected_dataset, "config": selected_config, "split": selected_split},
|
85 |
+
).json()
|
86 |
+
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
87 |
+
# splits = metadata[0]["splits"]
|
88 |
+
# split_names = list(splits.values())
|
89 |
+
# eval_split = splits.get("eval_split", split_names[0])
|
90 |
|
91 |
+
# selected_split = st.selectbox("Select a split", split_names, index=split_names.index(eval_split))
|
92 |
|
93 |
# TODO: add a function to handle the mapping task <--> column mapping
|
94 |
+
# col_mapping = metadata[0]["col_mapping"]
|
95 |
+
# col_names = list(col_mapping.keys())
|
96 |
|
|
|
97 |
st.markdown("**Map your data columns**")
|
98 |
col1, col2 = st.columns(2)
|
99 |
|
100 |
# TODO: find a better way to layout these items
|
101 |
+
col_mapping = {}
|
102 |
+
if selected_task in ["binary_classification", "multi_class_classification"]:
|
103 |
+
with col1:
|
104 |
+
st.markdown("`text` column")
|
105 |
+
st.text("")
|
106 |
+
st.text("")
|
107 |
+
st.text("")
|
108 |
+
st.text("")
|
109 |
+
st.markdown("`target` column")
|
110 |
+
with col2:
|
111 |
+
text_col = st.selectbox("This column should contain the text you want to classify", col_names)
|
112 |
+
target_col = st.selectbox(
|
113 |
+
"This column should contain the labels you want to assign to the text", col_names
|
114 |
+
)
|
115 |
+
col_mapping[text_col] = "text"
|
116 |
+
col_mapping[target_col] = "target"
|
117 |
|
118 |
+
elif selected_task == "entity_extraction":
|
119 |
+
with col1:
|
120 |
+
st.markdown("`tokens` column")
|
121 |
+
st.text("")
|
122 |
+
st.text("")
|
123 |
+
st.text("")
|
124 |
+
st.text("")
|
125 |
+
st.markdown("`tags` column")
|
126 |
+
with col2:
|
127 |
+
tokens_col = st.selectbox(
|
128 |
+
"This column should contain the parts of the text (as an array of tokens) you want to assign labels to",
|
129 |
+
col_names,
|
130 |
+
)
|
131 |
+
tags_col = st.selectbox(
|
132 |
+
"This column should contain the labels to associate to each part of the text", col_names
|
133 |
+
)
|
134 |
+
col_mapping[tokens_col] = "tokens"
|
135 |
+
col_mapping[tags_col] = "tags"
|
136 |
|
137 |
+
elif selected_task == "translation":
|
138 |
+
with col1:
|
139 |
+
st.markdown("`source` column")
|
140 |
+
st.text("")
|
141 |
+
st.text("")
|
142 |
+
st.text("")
|
143 |
+
st.text("")
|
144 |
+
st.markdown("`target` column")
|
145 |
+
with col2:
|
146 |
+
text_col = st.selectbox("This column should contain the text you want to translate", col_names)
|
147 |
+
target_col = st.selectbox(
|
148 |
+
"This column should contain an example translation of the source text", col_names
|
149 |
+
)
|
150 |
+
col_mapping[text_col] = "source"
|
151 |
+
col_mapping[target_col] = "target"
|
152 |
|
153 |
+
elif selected_task == "summarization":
|
154 |
+
with col1:
|
155 |
+
st.markdown("`text` column")
|
156 |
+
st.text("")
|
157 |
+
st.text("")
|
158 |
+
st.text("")
|
159 |
+
st.text("")
|
160 |
+
st.markdown("`target` column")
|
161 |
+
with col2:
|
162 |
+
text_col = st.selectbox("This column should contain the text you want to summarize", col_names)
|
163 |
+
target_col = st.selectbox("This column should contain an example summarization of the text", col_names)
|
164 |
+
col_mapping[text_col] = "text"
|
165 |
+
col_mapping[target_col] = "target"
|
166 |
|
167 |
+
elif selected_task == "extractive_question_answering":
|
168 |
+
with col1:
|
169 |
+
st.markdown("`context` column")
|
170 |
+
st.text("")
|
171 |
+
st.text("")
|
172 |
+
st.text("")
|
173 |
+
st.text("")
|
174 |
+
st.markdown("`question` column")
|
175 |
+
st.text("")
|
176 |
+
st.text("")
|
177 |
+
st.text("")
|
178 |
+
st.text("")
|
179 |
+
st.markdown("`answers.text` column")
|
180 |
+
st.text("")
|
181 |
+
st.text("")
|
182 |
+
st.text("")
|
183 |
+
st.text("")
|
184 |
+
st.markdown("`answers.answer_start` column")
|
185 |
+
with col2:
|
186 |
+
context_col = st.selectbox("This column should contain the question's context", col_names)
|
187 |
+
question_col = st.selectbox(
|
188 |
+
"This column should contain the question to be answered, given the context", col_names
|
189 |
+
)
|
190 |
+
answers_text_col = st.selectbox(
|
191 |
+
"This column should contain example answers to the question, extracted from the context", col_names
|
192 |
+
)
|
193 |
+
answers_start_col = st.selectbox(
|
194 |
+
"This column should contain the indices in the context of the first character of each answers.text",
|
195 |
+
col_names,
|
196 |
+
)
|
197 |
+
col_mapping[context_col] = "context"
|
198 |
+
col_mapping[question_col] = "question"
|
199 |
+
col_mapping[answers_text_col] = "answers.text"
|
200 |
+
col_mapping[answers_start_col] = "answers.answer_start"
|
201 |
+
|
202 |
+
with st.form(key="form"):
|
203 |
+
|
204 |
+
compatible_models = get_compatible_models(selected_task, selected_dataset)
|
205 |
+
|
206 |
+
selected_models = st.multiselect(
|
207 |
+
"Select the models you wish to evaluate", compatible_models
|
208 |
+
)
|
209 |
submit_button = st.form_submit_button("Make submission")
|
210 |
|
211 |
if submit_button:
|
212 |
+
project_id = str(uuid.uuid4())[:3]
|
213 |
+
payload = {
|
214 |
+
"username": AUTOTRAIN_USERNAME,
|
215 |
+
"proj_name": f"my-eval-project-{project_id}",
|
216 |
+
"task": TASK_TO_ID[selected_task],
|
217 |
+
"config": {
|
218 |
+
"language": "en",
|
219 |
+
"max_models": 5,
|
220 |
+
"instance": {
|
221 |
+
"provider": "aws",
|
222 |
+
"instance_type": "ml.g4dn.4xlarge",
|
223 |
+
"max_runtime_seconds": 172800,
|
224 |
+
"num_instances": 1,
|
225 |
+
"disk_size_gb": 150,
|
226 |
+
},
|
227 |
+
"evaluation": {
|
228 |
+
"metrics": [],
|
229 |
+
"models": selected_models,
|
230 |
+
},
|
231 |
+
},
|
232 |
+
}
|
233 |
+
print(f"Payload: {payload}")
|
234 |
+
project_json_resp = http_post(
|
235 |
+
path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
236 |
+
).json()
|
237 |
+
print(project_json_resp)
|
238 |
+
|
239 |
+
if project_json_resp["created"]:
|
240 |
payload = {
|
241 |
+
"split": 4, # use "auto" split choice in AutoTrain
|
242 |
+
"col_mapping": col_mapping,
|
243 |
+
"load_config": {"max_size_bytes": 0, "shuffle": False},
|
|
|
|
|
|
|
|
|
244 |
}
|
245 |
+
data_json_resp = http_post(
|
246 |
+
path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
|
247 |
+
payload=payload,
|
248 |
+
token=HF_TOKEN,
|
249 |
+
domain=AUTOTRAIN_BACKEND_API,
|
250 |
+
params={"type": "dataset", "config_name": selected_config, "split_name": selected_split},
|
251 |
).json()
|
252 |
+
print(data_json_resp)
|
253 |
+
if data_json_resp["download_status"] == 1:
|
254 |
+
train_json_resp = http_get(
|
255 |
+
path=f"/projects/{project_json_resp['id']}/data/start_process",
|
256 |
+
token=HF_TOKEN,
|
257 |
+
domain=AUTOTRAIN_BACKEND_API,
|
258 |
+
).json()
|
259 |
+
print(train_json_resp)
|
260 |
+
if train_json_resp["success"]:
|
261 |
+
st.success(f"β
Successfully submitted evaluation job with project ID {project_id}")
|
262 |
+
st.markdown(
|
263 |
+
f"""
|
264 |
+
Evaluation takes appoximately 1 hour to complete, so grab a β or π΅ while you wait:
|
265 |
+
|
266 |
+
* π Click [here](https://huggingface.co/spaces/huggingface/leaderboards) to view the results from your submission
|
267 |
+
"""
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
st.error("π Oh noes, there was an error submitting your submission!")
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
huggingface-hub==0.4.0
|
2 |
python-dotenv
|
3 |
-
streamlit
|
|
|
1 |
huggingface-hub==0.4.0
|
2 |
python-dotenv
|
3 |
+
streamlit==1.2.0
|
utils.py
CHANGED
@@ -1,6 +1,21 @@
|
|
|
|
|
|
1 |
import requests
|
2 |
from huggingface_hub import DatasetFilter, HfApi, ModelFilter
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
api = HfApi()
|
5 |
|
6 |
|
@@ -8,16 +23,23 @@ def get_auth_headers(token: str, prefix: str = "autonlp"):
|
|
8 |
return {"Authorization": f"{prefix} {token}"}
|
9 |
|
10 |
|
11 |
-
def http_post(
|
12 |
-
path: str,
|
13 |
-
token: str,
|
14 |
-
payload=None,
|
15 |
-
domain: str = None,
|
16 |
-
) -> requests.Response:
|
17 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
18 |
try:
|
19 |
response = requests.post(
|
20 |
-
url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
except requests.exceptions.ConnectionError:
|
23 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
@@ -25,13 +47,19 @@ def http_post(
|
|
25 |
return response
|
26 |
|
27 |
|
28 |
-
def get_metadata(dataset_name):
|
29 |
filt = DatasetFilter(dataset_name=dataset_name)
|
30 |
data = api.list_datasets(filter=filt, full=True)
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
def get_compatible_models(task, dataset_name):
|
35 |
-
|
|
|
|
|
|
|
36 |
compatible_models = api.list_models(filter=filt)
|
37 |
return [model.modelId for model in compatible_models]
|
|
|
1 |
+
from typing import Dict, Union
|
2 |
+
|
3 |
import requests
|
4 |
from huggingface_hub import DatasetFilter, HfApi, ModelFilter
|
5 |
|
6 |
+
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
7 |
+
"binary_classification": "text-classification",
|
8 |
+
"multi_class_classification": "text-classification",
|
9 |
+
# "multi_label_classification": "text-classification", # Not fully supported in AutoTrain
|
10 |
+
"entity_extraction": "token-classification",
|
11 |
+
"extractive_question_answering": "question-answering",
|
12 |
+
"translation": "translation",
|
13 |
+
"summarization": "summarization",
|
14 |
+
# "single_column_regression": 10,
|
15 |
+
}
|
16 |
+
|
17 |
+
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()}
|
18 |
+
|
19 |
api = HfApi()
|
20 |
|
21 |
|
|
|
23 |
return {"Authorization": f"{prefix} {token}"}
|
24 |
|
25 |
|
26 |
+
def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response:
|
|
|
|
|
|
|
|
|
|
|
27 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
28 |
try:
|
29 |
response = requests.post(
|
30 |
+
url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True, params=params
|
31 |
+
)
|
32 |
+
except requests.exceptions.ConnectionError:
|
33 |
+
print("β Failed to reach AutoNLP API, check your internet connection")
|
34 |
+
response.raise_for_status()
|
35 |
+
return response
|
36 |
+
|
37 |
+
|
38 |
+
def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response:
|
39 |
+
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
40 |
+
try:
|
41 |
+
response = requests.get(
|
42 |
+
url=domain + path, headers=get_auth_headers(token=token), allow_redirects=True, params=params
|
43 |
)
|
44 |
except requests.exceptions.ConnectionError:
|
45 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
|
47 |
return response
|
48 |
|
49 |
|
50 |
+
def get_metadata(dataset_name: str) -> Union[Dict, None]:
|
51 |
filt = DatasetFilter(dataset_name=dataset_name)
|
52 |
data = api.list_datasets(filter=filt, full=True)
|
53 |
+
if data[0].cardData is not None and "train-eval-index" in data[0].cardData.keys():
|
54 |
+
return data[0].cardData["train-eval-index"]
|
55 |
+
else:
|
56 |
+
return None
|
57 |
|
58 |
|
59 |
def get_compatible_models(task, dataset_name):
|
60 |
+
# TODO: relax filter on PyTorch models once supported in AutoTrain
|
61 |
+
filt = ModelFilter(
|
62 |
+
task=AUTOTRAIN_TASK_TO_HUB_TASK[task], trained_dataset=dataset_name, library=["transformers", "pytorch"]
|
63 |
+
)
|
64 |
compatible_models = api.list_models(filter=filt)
|
65 |
return [model.modelId for model in compatible_models]
|