Spaces:
Runtime error
Runtime error
Refactor
Browse files- app.py +60 -70
- evaluation.py +20 -0
app.py
CHANGED
@@ -8,8 +8,7 @@ from datasets import get_dataset_config_names
|
|
8 |
from dotenv import load_dotenv
|
9 |
from huggingface_hub import list_datasets
|
10 |
|
11 |
-
from evaluation import
|
12 |
-
get_evaluation_ids)
|
13 |
from utils import (get_compatible_models, get_key, get_metadata, http_get,
|
14 |
http_post)
|
15 |
|
@@ -247,82 +246,73 @@ with st.form(key="form"):
|
|
247 |
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
|
248 |
print("Selected models:", selected_models)
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
eval_info = EvaluationInfo(
|
254 |
-
task=selected_task,
|
255 |
-
model=model,
|
256 |
-
dataset_name=selected_dataset,
|
257 |
-
dataset_config=selected_config,
|
258 |
-
dataset_split=selected_split,
|
259 |
-
)
|
260 |
-
candidate_id = hash(eval_info)
|
261 |
-
if candidate_id in evaluation_ids:
|
262 |
-
st.info(f"Model {model} has already been evaluated on this configuration. Skipping ...")
|
263 |
-
selected_models.pop(idx)
|
264 |
-
|
265 |
print("Selected models:", selected_models)
|
266 |
|
267 |
submit_button = st.form_submit_button("Make submission")
|
268 |
|
269 |
if submit_button:
|
270 |
-
|
271 |
-
|
272 |
-
"username": AUTOTRAIN_USERNAME,
|
273 |
-
"proj_name": f"my-eval-project-{project_id}",
|
274 |
-
"task": TASK_TO_ID[selected_task],
|
275 |
-
"config": {
|
276 |
-
"language": "en",
|
277 |
-
"max_models": 5,
|
278 |
-
"instance": {
|
279 |
-
"provider": "aws",
|
280 |
-
"instance_type": "ml.g4dn.4xlarge",
|
281 |
-
"max_runtime_seconds": 172800,
|
282 |
-
"num_instances": 1,
|
283 |
-
"disk_size_gb": 150,
|
284 |
-
},
|
285 |
-
"evaluation": {
|
286 |
-
"metrics": [],
|
287 |
-
"models": selected_models,
|
288 |
-
},
|
289 |
-
},
|
290 |
-
}
|
291 |
-
print(f"Payload: {payload}")
|
292 |
-
project_json_resp = http_post(
|
293 |
-
path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
294 |
-
).json()
|
295 |
-
print(project_json_resp)
|
296 |
-
|
297 |
-
if project_json_resp["created"]:
|
298 |
payload = {
|
299 |
-
"
|
300 |
-
"
|
301 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
}
|
303 |
-
|
304 |
-
|
305 |
-
payload=payload,
|
306 |
-
token=HF_TOKEN,
|
307 |
-
domain=AUTOTRAIN_BACKEND_API,
|
308 |
-
params={"type": "dataset", "config_name": selected_config, "split_name": selected_split},
|
309 |
).json()
|
310 |
-
print(
|
311 |
-
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
token=HF_TOKEN,
|
315 |
domain=AUTOTRAIN_BACKEND_API,
|
|
|
316 |
).json()
|
317 |
-
print(
|
318 |
-
if
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
""
|
326 |
-
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from dotenv import load_dotenv
|
9 |
from huggingface_hub import list_datasets
|
10 |
|
11 |
+
from evaluation import EvaluationInfo, filter_evaluated_models
|
|
|
12 |
from utils import (get_compatible_models, get_key, get_metadata, http_get,
|
13 |
http_post)
|
14 |
|
|
|
246 |
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
|
247 |
print("Selected models:", selected_models)
|
248 |
|
249 |
+
selected_models = filter_evaluated_models(
|
250 |
+
selected_models, selected_task, selected_dataset, selected_config, selected_split
|
251 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
print("Selected models:", selected_models)
|
253 |
|
254 |
submit_button = st.form_submit_button("Make submission")
|
255 |
|
256 |
if submit_button:
|
257 |
+
if len(selected_models) > 0:
|
258 |
+
project_id = str(uuid.uuid4())[:3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
payload = {
|
260 |
+
"username": AUTOTRAIN_USERNAME,
|
261 |
+
"proj_name": f"my-eval-project-{project_id}",
|
262 |
+
"task": TASK_TO_ID[selected_task],
|
263 |
+
"config": {
|
264 |
+
"language": "en",
|
265 |
+
"max_models": 5,
|
266 |
+
"instance": {
|
267 |
+
"provider": "aws",
|
268 |
+
"instance_type": "ml.g4dn.4xlarge",
|
269 |
+
"max_runtime_seconds": 172800,
|
270 |
+
"num_instances": 1,
|
271 |
+
"disk_size_gb": 150,
|
272 |
+
},
|
273 |
+
"evaluation": {
|
274 |
+
"metrics": [],
|
275 |
+
"models": selected_models,
|
276 |
+
},
|
277 |
+
},
|
278 |
}
|
279 |
+
print(f"Payload: {payload}")
|
280 |
+
project_json_resp = http_post(
|
281 |
+
path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
|
|
|
|
|
|
282 |
).json()
|
283 |
+
print(project_json_resp)
|
284 |
+
|
285 |
+
if project_json_resp["created"]:
|
286 |
+
payload = {
|
287 |
+
"split": 4, # use "auto" split choice in AutoTrain
|
288 |
+
"col_mapping": col_mapping,
|
289 |
+
"load_config": {"max_size_bytes": 0, "shuffle": False},
|
290 |
+
}
|
291 |
+
data_json_resp = http_post(
|
292 |
+
path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
|
293 |
+
payload=payload,
|
294 |
token=HF_TOKEN,
|
295 |
domain=AUTOTRAIN_BACKEND_API,
|
296 |
+
params={"type": "dataset", "config_name": selected_config, "split_name": selected_split},
|
297 |
).json()
|
298 |
+
print(data_json_resp)
|
299 |
+
if data_json_resp["download_status"] == 1:
|
300 |
+
train_json_resp = http_get(
|
301 |
+
path=f"/projects/{project_json_resp['id']}/data/start_process",
|
302 |
+
token=HF_TOKEN,
|
303 |
+
domain=AUTOTRAIN_BACKEND_API,
|
304 |
+
).json()
|
305 |
+
print(train_json_resp)
|
306 |
+
if train_json_resp["success"]:
|
307 |
+
st.success(f"β
Successfully submitted evaluation job with project ID {project_id}")
|
308 |
+
st.markdown(
|
309 |
+
f"""
|
310 |
+
Evaluation takes appoximately 1 hour to complete, so grab a β or π΅ while you wait:
|
311 |
+
|
312 |
+
* π Click [here](https://huggingface.co/spaces/autoevaluate/leaderboards) to view the results from your submission
|
313 |
+
"""
|
314 |
+
)
|
315 |
+
else:
|
316 |
+
st.error("π Oh noes, there was an error submitting your evaluation job!")
|
317 |
+
else:
|
318 |
+
st.warning("β οΈ No models were selected for evaluation!")
|
evaluation.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
|
|
|
3 |
from huggingface_hub import DatasetFilter, HfApi
|
4 |
from huggingface_hub.hf_api import DatasetInfo
|
5 |
|
@@ -24,3 +25,22 @@ def get_evaluation_ids():
|
|
24 |
filt = DatasetFilter(author="autoevaluate")
|
25 |
evaluation_datasets = HfApi().list_datasets(filter=filt, full=True)
|
26 |
return [compute_evaluation_id(dset) for dset in evaluation_datasets]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from dataclasses import dataclass
|
2 |
|
3 |
+
import streamlit as st
|
4 |
from huggingface_hub import DatasetFilter, HfApi
|
5 |
from huggingface_hub.hf_api import DatasetInfo
|
6 |
|
|
|
25 |
filt = DatasetFilter(author="autoevaluate")
|
26 |
evaluation_datasets = HfApi().list_datasets(filter=filt, full=True)
|
27 |
return [compute_evaluation_id(dset) for dset in evaluation_datasets]
|
28 |
+
|
29 |
+
|
30 |
+
def filter_evaluated_models(models, task, dataset_name, dataset_config, dataset_split):
|
31 |
+
evaluation_ids = get_evaluation_ids()
|
32 |
+
|
33 |
+
for idx, model in enumerate(models):
|
34 |
+
evaluation_info = EvaluationInfo(
|
35 |
+
task=task,
|
36 |
+
model=model,
|
37 |
+
dataset_name=dataset_name,
|
38 |
+
dataset_config=dataset_config,
|
39 |
+
dataset_split=dataset_split,
|
40 |
+
)
|
41 |
+
candidate_id = hash(evaluation_info)
|
42 |
+
if candidate_id in evaluation_ids:
|
43 |
+
st.info(f"Model {model} has already been evaluated on this configuration. Skipping evaluation...")
|
44 |
+
models.pop(idx)
|
45 |
+
|
46 |
+
return models
|