Spaces:
Runtime error
Runtime error
Add integration with AutoTrain
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
from pathlib import Path
|
3 |
|
4 |
import streamlit as st
|
@@ -25,7 +26,7 @@ TASK_TO_ID = {
|
|
25 |
"extractive_question_answering": 5,
|
26 |
"translation": 6,
|
27 |
"summarization": 8,
|
28 |
-
"single_column_regression": 10,
|
29 |
}
|
30 |
|
31 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
@@ -36,9 +37,11 @@ AUTOTRAIN_TASK_TO_HUB_TASK = {
|
|
36 |
"extractive_question_answering": "question-answering",
|
37 |
"translation": "translation",
|
38 |
"summarization": "summarization",
|
39 |
-
"single_column_regression": 10,
|
40 |
}
|
41 |
|
|
|
|
|
42 |
###########
|
43 |
### APP ###
|
44 |
###########
|
@@ -63,13 +66,9 @@ if "dataset" in query_params:
|
|
63 |
selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset))
|
64 |
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
|
65 |
|
66 |
-
# TODO: remove this step once we select real datasets
|
67 |
-
# Strip out original dataset name
|
68 |
-
# original_dataset_name = dataset_name.split("/")[-1].split("__")[-1]
|
69 |
|
70 |
-
# In general this will be a list of multiple configs => need to generalise logic here
|
71 |
metadata = get_metadata(selected_dataset)
|
72 |
-
print(metadata)
|
73 |
if metadata is None:
|
74 |
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
75 |
|
@@ -120,16 +119,29 @@ with st.expander("Advanced configuration"):
|
|
120 |
# TODO: find a better way to layout these items
|
121 |
# TODO: propagate this information to payload
|
122 |
# TODO: make it task specific
|
|
|
123 |
with col1:
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
with col2:
|
131 |
-
st.selectbox("This column should contain the text you want to classify", col_names, index=0)
|
132 |
-
st.selectbox(
|
|
|
|
|
|
|
|
|
133 |
|
134 |
with st.form(key="form"):
|
135 |
|
@@ -138,75 +150,65 @@ with st.form(key="form"):
|
|
138 |
selected_models = st.multiselect(
|
139 |
"Select the models you wish to evaluate", compatible_models
|
140 |
) # , compatible_models[0])
|
141 |
-
print(selected_models)
|
142 |
-
|
143 |
submit_button = st.form_submit_button("Make submission")
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
# ).json()
|
206 |
-
# print(json_resp)
|
207 |
-
|
208 |
-
# st.write("Training")
|
209 |
-
# json_resp = http_get(
|
210 |
-
# path="/projects/522/data/start_process", token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
211 |
-
# ).json()
|
212 |
-
# print(json_resp)
|
|
|
1 |
import os
|
2 |
+
import uuid
|
3 |
from pathlib import Path
|
4 |
|
5 |
import streamlit as st
|
|
|
26 |
"extractive_question_answering": 5,
|
27 |
"translation": 6,
|
28 |
"summarization": 8,
|
29 |
+
# "single_column_regression": 10,
|
30 |
}
|
31 |
|
32 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
|
|
37 |
"extractive_question_answering": "question-answering",
|
38 |
"translation": "translation",
|
39 |
"summarization": "summarization",
|
40 |
+
# "single_column_regression": 10,
|
41 |
}
|
42 |
|
43 |
+
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()}
|
44 |
+
|
45 |
###########
|
46 |
### APP ###
|
47 |
###########
|
|
|
66 |
selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset))
|
67 |
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
|
68 |
|
|
|
|
|
|
|
69 |
|
70 |
+
# TODO: In general this will be a list of multiple configs => need to generalise logic here
|
71 |
metadata = get_metadata(selected_dataset)
|
|
|
72 |
if metadata is None:
|
73 |
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
74 |
|
|
|
119 |
# TODO: find a better way to layout these items
|
120 |
# TODO: propagate this information to payload
|
121 |
# TODO: make it task specific
|
122 |
+
col_mapping = {}
|
123 |
with col1:
|
124 |
+
if selected_task == "text-classification":
|
125 |
+
st.markdown("`text` column")
|
126 |
+
st.text("")
|
127 |
+
st.text("")
|
128 |
+
st.text("")
|
129 |
+
st.text("")
|
130 |
+
st.markdown("`target` column")
|
131 |
+
elif selected_task == "question-answering":
|
132 |
+
st.markdown("`context` column")
|
133 |
+
st.text("")
|
134 |
+
st.text("")
|
135 |
+
st.text("")
|
136 |
+
st.text("")
|
137 |
+
st.markdown("`question` column")
|
138 |
with col2:
|
139 |
+
text_col = st.selectbox("This column should contain the text you want to classify", col_names, index=0)
|
140 |
+
target_col = st.selectbox(
|
141 |
+
"This column should contain the labels you want to assign to the text", col_names, index=1
|
142 |
+
)
|
143 |
+
col_mapping[text_col] = "text"
|
144 |
+
col_mapping[target_col] = "target"
|
145 |
|
146 |
with st.form(key="form"):
|
147 |
|
|
|
150 |
selected_models = st.multiselect(
|
151 |
"Select the models you wish to evaluate", compatible_models
|
152 |
) # , compatible_models[0])
|
|
|
|
|
153 |
submit_button = st.form_submit_button("Make submission")
|
154 |
|
155 |
+
if submit_button:
|
156 |
+
project_id = str(uuid.uuid4())[:3]
|
157 |
+
autotrain_task_name = HUB_TASK_TO_AUTOTRAIN_TASK[selected_task]
|
158 |
+
payload = {
|
159 |
+
"username": AUTOTRAIN_USERNAME,
|
160 |
+
"proj_name": f"my-eval-project-{project_id}",
|
161 |
+
"task": TASK_TO_ID[autotrain_task_name],
|
162 |
+
"config": {
|
163 |
+
"language": "en",
|
164 |
+
"max_models": 5,
|
165 |
+
"instance": {
|
166 |
+
"provider": "aws",
|
167 |
+
"instance_type": "ml.g4dn.4xlarge",
|
168 |
+
"max_runtime_seconds": 172800,
|
169 |
+
"num_instances": 1,
|
170 |
+
"disk_size_gb": 150,
|
171 |
+
},
|
172 |
+
"evaluation": {
|
173 |
+
"metrics": [],
|
174 |
+
"models": selected_models,
|
175 |
+
},
|
176 |
+
},
|
177 |
+
}
|
178 |
+
project_json_resp = http_post(
|
179 |
+
path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
180 |
+
).json()
|
181 |
+
print(project_json_resp)
|
182 |
+
|
183 |
+
if project_json_resp["created"]:
|
184 |
+
payload = {
|
185 |
+
"split": 4,
|
186 |
+
"col_mapping": col_mapping,
|
187 |
+
"load_config": {"max_size_bytes": 0, "shuffle": False},
|
188 |
+
}
|
189 |
+
data_json_resp = http_post(
|
190 |
+
path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
|
191 |
+
payload=payload,
|
192 |
+
token=HF_TOKEN,
|
193 |
+
domain=AUTOTRAIN_BACKEND_API,
|
194 |
+
params={"type": "dataset", "config_name": selected_config, "split_name": selected_split},
|
195 |
+
).json()
|
196 |
+
print(data_json_resp)
|
197 |
+
if data_json_resp["download_status"] == 1:
|
198 |
+
train_json_resp = http_get(
|
199 |
+
path=f"/projects/{project_json_resp['id']}/data/start_process",
|
200 |
+
token=HF_TOKEN,
|
201 |
+
domain=AUTOTRAIN_BACKEND_API,
|
202 |
+
).json()
|
203 |
+
print(train_json_resp)
|
204 |
+
if train_json_resp["success"]:
|
205 |
+
st.success(f"β
Successfully submitted evaluation job with project ID {project_id}")
|
206 |
+
st.markdown(
|
207 |
+
f"""
|
208 |
+
Evaluation takes appoximately 1 hour to complete, so grab a β or π΅ while you wait:
|
209 |
+
|
210 |
+
* π Click [here](https://huggingface.co/spaces/huggingface/leaderboards) to view the results from your submission
|
211 |
+
"""
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
st.error("π Oh noes, there was an error submitting your submission!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|