canerturkmen commited on
Commit
c243550
β€’
1 Parent(s): 438f1e5

Update space README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -28
README.md CHANGED
@@ -12,23 +12,43 @@ pinned: false
12
  <div align="center">
13
  <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
14
 
15
- ## AutoML for Image, Text, Time Series, and Tabular Data
16
-
17
- [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
18
- [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
19
- [![Python Versions](https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue)](https://pypi.org/project/autogluon/)
20
- [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
21
- [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
22
- [![Discord](https://img.shields.io/discord/1043248669505368144?logo=discord&style=flat)](https://discord.gg/wjUmjqAc2N)
23
- [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
24
- [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
25
- [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  [Install Instructions](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
28
 
29
- AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
30
  </div>
31
 
 
 
 
32
  ## πŸ’Ύ Installation
33
 
34
  AutoGluon is supported on Python 3.8 - 3.11 and is available on Linux, MacOS, and Windows.
@@ -41,7 +61,7 @@ pip install autogluon
41
 
42
  Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
43
 
44
- ## :zap: Quickstart
45
 
46
  Build accurate end-to-end ML models in just 3 lines of code!
47
 
@@ -51,13 +71,59 @@ predictor = TabularPredictor(label="class").fit("train.csv")
51
  predictions = predictor.predict("test.csv")
52
  ```
53
 
54
- | AutoGluon Task | Quickstart | API |
55
- |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
56
- | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
57
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
58
- | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
59
-
60
- ## :mag: Resources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  ### Hands-on Tutorials / Talks
63
 
@@ -65,11 +131,11 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
65
 
66
  | Title | Format | Location | Date |
67
  |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
68
- | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML Conf 2023](https://2023.automl.cc/) | 2023/09/12 |
69
- | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
70
- | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
71
- | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
72
- | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
73
 
74
  ### Scientific Publications
75
  - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
@@ -92,14 +158,14 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
92
  - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
93
  - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
94
 
95
- ## :pencil: Citing AutoGluon
96
 
97
  If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
98
 
99
- ## :wave: How to get involved
100
 
101
  We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
102
 
103
- ## :classical_building: License
104
 
105
  This library is licensed under the Apache 2.0 License.
 
12
  <div align="center">
13
  <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
14
 
15
+ <h2>AutoML for Image, Text, Time Series, and Tabular Data</h2>
16
+
17
+
18
+ <div style="width: max-content; margin: 0 auto; max-width: 90%;">
19
+ <p style="display: flex; flex-wrap: wrap; gap: 10px; padding: 0; line-height: 1.1; justify-content: center;">
20
+ <a rel="nofollow" style="display: inline-block;" href="https://github.com/autogluon/autogluon/releases">
21
+ <img style="margin: 10px 0" alt="Latest Release" src="https://img.shields.io/github/v/release/autogluon/autogluon">
22
+ </a>
23
+ <a rel="nofollow" style="display: inline-block;" href="https://anaconda.org/conda-forge/autogluon">
24
+ <img style="margin: 10px 0" alt="Conda Forge" src="https://img.shields.io/conda/vn/conda-forge/autogluon.svg">
25
+ </a>
26
+ <a rel="nofollow" style="display: inline-block;" href="https://pypi.org/project/autogluon/">
27
+ <img style="margin: 10px 0" alt="Python Versions" src="https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue">
28
+ </a>
29
+ <a rel="nofollow" style="display: inline-block;" href="https://pepy.tech/project/autogluon">
30
+ <img style="margin: 10px 0" alt="Downloads" src="https://pepy.tech/badge/autogluon/month">
31
+ </a>
32
+ <a rel="nofollow" style="display: inline-block;" href="https://github.com/autogluon/autogluon/blob/master/LICENSE">
33
+ <img style="margin: 10px 0" alt="GitHub license" src="https://img.shields.io/badge/License-Apache_2.0-blue.svg">
34
+ </a>
35
+ <a rel="nofollow" style="display: inline-block;" href="https://discord.gg/wjUmjqAc2N">
36
+ <img style="margin: 10px 0" alt="Discord" src="https://img.shields.io/discord/1043248669505368144?logo=discord&amp;style=flat">
37
+ </a>
38
+ <a rel="nofollow" style="display: inline-block;" href="https://x.com/autogluon">
39
+ <img style="margin: 10px 0" alt="Twitter" src="https://img.shields.io/twitter/follow/autogluon?style=social">
40
+ </a>
41
+ </p>
42
+ </div>
43
+
44
 
45
  [Install Instructions](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
46
 
 
47
  </div>
48
 
49
+
50
+ AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
51
+
52
  ## πŸ’Ύ Installation
53
 
54
  AutoGluon is supported on Python 3.8 - 3.11 and is available on Linux, MacOS, and Windows.
 
61
 
62
  Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
63
 
64
+ ## ⚑ Quickstart
65
 
66
  Build accurate end-to-end ML models in just 3 lines of code!
67
 
 
71
  predictions = predictor.predict("test.csv")
72
  ```
73
 
74
+ <table>
75
+ <thead>
76
+ <tr>
77
+ <th style="text-align: left">AutoGluon Task</th>
78
+ <th style="text-align: left">Quickstart</th>
79
+ <th style="text-align: left">API</th>
80
+ </tr>
81
+ </thead>
82
+ <tbody>
83
+ <tr>
84
+ <td>TabularPredictor</td>
85
+ <td>
86
+ <a href="https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html">
87
+ <img style="margin: 0" alt="Quick Start" src="https://img.shields.io/static/v1?label=&message=tutorial&color=grey">
88
+ </a>
89
+ </td>
90
+ <td>
91
+ <a href="https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html">
92
+ <img style="margin: 0" alt="API" src="https://img.shields.io/badge/api-reference-blue.svg">
93
+ </a>
94
+ </td>
95
+ </tr>
96
+ <tr>
97
+ <td>TimeSeriesPredictor</td>
98
+ <td>
99
+ <a href="https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html">
100
+ <img style="margin: 0" alt="Quick Start" src="https://img.shields.io/static/v1?label=&message=tutorial&color=grey">
101
+ </a>
102
+ </td>
103
+ <td>
104
+ <a href="https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html">
105
+ <img style="margin: 0" alt="API" src="https://img.shields.io/badge/api-reference-blue.svg">
106
+ </a>
107
+ </td>
108
+ </tr>
109
+ <tr>
110
+ <td>MultiModalPredictor</td>
111
+ <td>
112
+ <a href="https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html">
113
+ <img style="margin: 0" alt="Quick Start" src="https://img.shields.io/static/v1?label=&message=tutorial&color=grey">
114
+ </a>
115
+ </td>
116
+ <td>
117
+ <a href="https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html">
118
+ <img style="margin: 0" alt="API" src="https://img.shields.io/badge/api-reference-blue.svg">
119
+ </a>
120
+ </td>
121
+ </tr>
122
+ </tbody>
123
+ </table>
124
+
125
+
126
+ ## πŸ” Resources
127
 
128
  ### Hands-on Tutorials / Talks
129
 
 
131
 
132
  | Title | Format | Location | Date |
133
  |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
134
+ | πŸ“Ί [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML Conf 2023](https://2023.automl.cc/) | 2023/09/12 |
135
+ | πŸ”‰ [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
136
+ | πŸ“Ί [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
137
+ | πŸ“Ί [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
138
+ | πŸ“Ί [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
139
 
140
  ### Scientific Publications
141
  - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
 
158
  - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
159
  - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
160
 
161
+ ## πŸ“ Citing AutoGluon
162
 
163
  If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
164
 
165
+ ## πŸ‘‹ How to get involved
166
 
167
  We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
168
 
169
+ ## πŸ›οΈ License
170
 
171
  This library is licensed under the Apache 2.0 License.