Spaces:
Running
Running
from transformers import TextClassificationPipeline | |
from transformers import AutoTokenizer | |
from transformers import pipeline | |
import evaluate | |
import gradio as gr | |
import torch | |
import random | |
from transformers.file_utils import is_tf_available, is_torch_available, is_torch_tpu_available | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments | |
from datasets import load_metric | |
from sklearn.model_selection import train_test_split | |
import pandas as pd | |
import numpy as np | |
import streamlit as st | |
from textblob import TextBlob | |
from streamlit_extras.switch_page_button import switch_page | |
from transformers import YolosImageProcessor, YolosForObjectDetection | |
from PIL import Image | |
import torch | |
import requests | |
import numpy as np | |
import torchvision | |
from torchvision.io import read_image | |
from torchvision.utils import draw_bounding_boxes | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
from transformers import pipeline | |
import torch | |
from transformers import PegasusForConditionalGeneration, PegasusTokenizer | |
st.set_page_config(layout="wide") | |
def get_models(prompt): | |
#prompt = input("Enter your AI task idea:") | |
response = pipe(prompt) | |
print("AI Model Idea: ", prompt,"\n") | |
x = pd.json_normalize(response[0]) | |
# x.nlargest(3,['score'])["label"].values | |
knowledge_base_tasks = ['depth-estimation', 'image-classification', 'image-segmentation', | |
'image-to-image', 'object-detection', 'video-classification', | |
'unconditional-image-generation', 'zero-shot-image-classification', | |
'conversational', 'fill-mask', 'question-answering', | |
'sentence-similarity', 'summarization', 'table-question-answering', | |
'text-classification', 'text-generation', 'token-classification', | |
'translation', 'zero-shot-classification'] | |
temp = [] | |
for label_code in x.nlargest(3,['score'])["label"].values: | |
temp.append(label_code[6:]) | |
# temp | |
cat_to_model = {} | |
top_cats = [] | |
for i in range(len(temp)): | |
print("Possible Category ",i+1," : ",knowledge_base_tasks[int(temp[i])]) | |
print("Top three models for this category are:",models_list[models_list["pipeline_tag"] == knowledge_base_tasks[int(temp[i])]].nlargest(3,"downloads")["modelId"].values) | |
cat_to_model[knowledge_base_tasks[int(temp[i])]] = models_list[models_list["pipeline_tag"] == knowledge_base_tasks[int(temp[i])]].nlargest(3,"downloads")["modelId"].values | |
top_cats.append(knowledge_base_tasks[int(temp[i])]) | |
# models_list[models_list["pipeline_tag"] == "image-classification"].nlargest(3,"downloads")["modelId"].values | |
print() | |
print("Returning category-models dictionary..") | |
return top_cats,cat_to_model | |
def get_top_3(top_cat): | |
top_3_df = pd.read_csv("./Top_3_models.csv") | |
top_3 = [] | |
for i in range(top_3_df.shape[0]): | |
if top_3_df["Category"].iloc[i].lower() == top_cat: | |
top_3.append(top_3_df["Model_1"].iloc[i]) | |
top_3.append(top_3_df["Model_2"].iloc[i]) | |
top_3.append(top_3_df["Model_3"].iloc[i]) | |
break | |
return top_3 | |
def get_top_3_a(prompt,pipe): | |
response = pipe(prompt) | |
x = pd.json_normalize(response[0]) | |
temp = [] | |
for label_code in x.nlargest(3,['score'])["label"].values: | |
temp.append(label_code[6:]) | |
knowledge_base_tasks = ['depth-estimation', 'image-classification', 'image-segmentation', | |
'image-to-image', 'object-detection', 'video-classification', | |
'unconditional-image-generation', 'zero-shot-image-classification', | |
'conversational', 'fill-mask', 'question-answering', | |
'sentence-similarity', 'summarization', 'table-question-answering', | |
'text-classification', 'text-generation', 'token-classification', | |
'translation', 'zero-shot-classification'] | |
top_cat = knowledge_base_tasks[int(temp[0])] | |
top_3_df = pd.read_csv("./Top_3_models.csv") | |
top_3 = [] | |
for i in range(top_3_df.shape[0]): | |
if top_3_df["Category"].iloc[i] == top_cat: | |
top_3.append(top_3_df["Model_1"].iloc[i]) | |
top_3.append(top_3_df["Model_2"].iloc[i]) | |
top_3.append(top_3_df["Model_3"].iloc[i]) | |
break | |
return top_cat,top_3 | |
def get_response(input_text,model_name): | |
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
tokenizer = PegasusTokenizer.from_pretrained(model_name) | |
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device) | |
batch = tokenizer([input_text],truncation=True,padding='longest',max_length=1024, return_tensors="pt").to(torch_device) | |
gen_out = model.generate(**batch,max_length=128,num_beams=5, num_return_sequences=1, temperature=1.5) | |
output_text = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
return output_text | |
def summarizer (models, data): | |
model_Eval = {} | |
for i in range (len(models)): | |
# print(models[i]) | |
if models[i] == 'tuner007/pegasus_summarizer': | |
model_name = 'tuner007/pegasus_summarizer' | |
result = get_response(data,model_name) | |
rouge = evaluate.load('rouge') | |
# print("345",rouge.compute(predictions=[result],references=[data])) | |
print(type(result), type([data])) | |
quality = rouge.compute(predictions=[result[0]],references=[data]) | |
model_Eval[models[i]] = {"Score":quality,"Result": result} | |
else: | |
summarizer_model = pipeline("summarization", model = models[i]) | |
print(models[i], summarizer_model(data)) | |
try: | |
result = summarizer_model(data)[0]["summary_text"] | |
rouge = evaluate.load('rouge') | |
# print("345",rouge.compute(predictions=[result],references=[data])) | |
quality = rouge.compute(predictions=[result],references=[data]) | |
model_Eval[models[i]] = {"Score":quality,"Result": result} | |
except: | |
print("Model {} has issues.".format(models[i])) | |
return model_Eval | |
def best_model (analysis, data): | |
best_model_score = 0 | |
best_model_name = "" | |
best_model_result = "" | |
temp2 = 0 | |
for model in analysis.keys(): | |
temp1 = analysis[model]["Score"]["rougeLsum"] | |
if temp1 > temp2: | |
temp2 = analysis[model]["Score"]["rougeLsum"] | |
best_model_score = analysis[model]["Score"] | |
best_model_name = model | |
best_model_result = analysis[model]["Result"] | |
return best_model_name, best_model_score,data[:50],best_model_result.replace("\n","") | |
def text_summarization(): | |
top_models = get_top_3("summarization") | |
# st.write("Upload your file: ") | |
# uploaded_files = "" | |
# uploaded_files = st.file_uploader("Choose your file", accept_multiple_files=True) | |
option = st.selectbox( | |
'What text would you like AI to summarize for you now ?', | |
("Choose text files below:",'How to Win friends - Text', 'The Age of Intelligent Machines', 'The Singularity is Near - Ray Kurzweil.txt')) #add 2 other options of files here | |
if option == 'How to Win friends - Text' or option == 'The Age of Intelligent Machines' or option == 'The Singularity is Near - Ray Kurzweil.txt':### update book text files here | |
st.write('You selected:', option) | |
if option == 'How to Win friends - Text': # add text | |
name = "How_to_win_friends.txt" | |
st.write("Selected file for analyis is: How_to_win_friends.txt") | |
st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True) | |
if option == 'The Age of Intelligent Machines': | |
name = "The Age of Intelligent Machines.txt" | |
st.write("Selected file for analyis is: The Age of Intelligent Machines.txt") | |
st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True) | |
if option == "The Singularity is Near - Ray Kurzweil.txt": | |
name = "The Singularity is Near - Ray Kurzweil.txt" | |
st.write("The Singularity is Near - Ray Kurzweil.txt") | |
st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True) | |
if st.button("Accept"): | |
global file_data | |
# st.write("filename:", uploaded_files) | |
# for uploaded_file in uploaded_files: | |
# # print("here") | |
# file_data = open(uploaded_file.name,encoding="utf8").read() | |
# st.write("filename:", uploaded_file.name) | |
# # st.write(file_data[:500]) | |
# # print("before summarizer") | |
# print(file_data[:50]) | |
file_data = open(name,encoding="utf8").read() | |
analysis = summarizer(models = top_models, data = file_data[:500]) | |
x,c,v,b = best_model(analysis,file_data[:500]) | |
# st.write("Best model for Task: ",z) | |
st.markdown(f'<p style="color: #012d51;font-size:32px;border-radius:%;">{"Best Model with Summarization Results"}</p>', unsafe_allow_html=True) | |
st.write("\nBest model name: ",x) | |
# st.write("\nBest model Score: ",c) | |
st.write("Best Model Rouge Scores: ") | |
st.write("Rouge 1 Score: ",c["rouge1"]) | |
st.write("Rouge 2 Score: ",c["rouge2"]) | |
st.write("Rouge L Score: ",c["rougeL"]) | |
st.write("Rouge LSum Score: ",c["rougeLsum"]) | |
st.write("\nOriginal Data first 50 characters: ", v) | |
st.write("\nBest Model Result: ",b) | |
# print("between summarizer analysis") | |
st.markdown(f'<p style="color: #012d51;font-size:32px;border-radius:%;">{"Summarization Results for Model 1: Bart"}</p>', unsafe_allow_html=True) | |
# st.write("Summarization Results for Model 1") | |
st.write("Model name: facebook/bart-large-cnn") | |
st.write("Rouge Scores: ") | |
st.write("Rouge 1 Score: ",analysis["facebook/bart-large-cnn"]["Score"]["rouge1"]) | |
st.write("Rouge 2 Score: ",analysis["facebook/bart-large-cnn"]["Score"]["rouge2"]) | |
st.write("Rouge L Score: ",analysis["facebook/bart-large-cnn"]["Score"]["rougeL"]) | |
st.write(f"Rouge LSum Score: ",analysis["facebook/bart-large-cnn"]["Score"]["rougeLsum"]) | |
st.write("Result: ", analysis["facebook/bart-large-cnn"]["Result"]) | |
st.markdown(f'<p style="color: #012d51;font-size:32px;border-radius:%;">{"Summarization Results for Model 2: Pegasus"}</p>', unsafe_allow_html=True) | |
# st.write("Summarization Results for Model 2") | |
st.write("Model name: tuner007/pegasus_summarizer") | |
st.write("Rouge Scores: ") | |
st.write("Rouge 1 Score: ",analysis["tuner007/pegasus_summarizer"]["Score"]["rouge1"]) | |
st.write("Rouge 2 Score: ",analysis["tuner007/pegasus_summarizer"]["Score"]["rouge2"]) | |
st.write("Rouge L Score: ",analysis["tuner007/pegasus_summarizer"]["Score"]["rougeL"]) | |
st.write("Rouge LSum Score: ",analysis["tuner007/pegasus_summarizer"]["Score"]["rougeLsum"]) | |
st.write("Result: ", analysis["tuner007/pegasus_summarizer"]["Result"][0]) | |
st.markdown(f'<p style="color: #012d51;font-size:32px;border-radius:%;">{"Summarization Results for Model 3: Distilbart"}</p>', unsafe_allow_html=True) | |
# st.write("Summarization Results for Model 3") | |
st.write("Model name: sshleifer/distilbart-cnn-12-6") | |
st.write("Rouge Scores: ") | |
st.write("Rouge 1 Score: ",analysis["sshleifer/distilbart-cnn-12-6"]["Score"]["rouge1"]) | |
st.write("Rouge 2 Score: ",analysis["sshleifer/distilbart-cnn-12-6"]["Score"]["rouge2"]) | |
st.write("Rouge L Score: ",analysis["sshleifer/distilbart-cnn-12-6"]["Score"]["rougeL"]) | |
st.write("Rouge LSum Score: ",analysis["sshleifer/distilbart-cnn-12-6"]["Score"]["rougeLsum"]) | |
st.write("Result: ", analysis["sshleifer/distilbart-cnn-12-6"]["Result"]) | |
#OBJECT DETECTION | |
def yolo_tiny(name): | |
image = read_image(name) | |
model = YolosForObjectDetection.from_pretrained('hustvl/yolos-tiny') | |
image_processor = YolosImageProcessor.from_pretrained("hustvl/yolos-tiny") | |
inputs = image_processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# model predicts bounding boxes and corresponding COCO classes | |
logits = outputs.logits | |
bboxes = outputs.pred_boxes | |
# print results | |
target_sizes = torch.tensor([image.shape[::-1][:2]]) | |
results = image_processor.post_process_object_detection(outputs, threshold=0.7, target_sizes=target_sizes)[0] | |
label_ = [] | |
bboxes = [] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
print( | |
f"Detected {model.config.id2label[label.item()]} with confidence " | |
f"{round(score.item(), 3)} at location {box}" | |
) | |
label_.append(model.config.id2label[label.item()]) | |
bboxes.append(np.asarray(box,dtype="int")) | |
bboxes = torch.tensor(bboxes, dtype=torch.int) | |
img=draw_bounding_boxes(image, bboxes,labels = label_, width=3) | |
img = torchvision.transforms.ToPILImage()(img) | |
return img | |
# img.show() | |
def resnet_101(name): | |
image = read_image(name) | |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-101") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101") | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# convert outputs (bounding boxes and class logits) to COCO API | |
# let's only keep detections with score > 0.9 | |
target_sizes = torch.tensor([image.shape[::-1][:2]]) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0] | |
label_ = [] | |
bboxes = [] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
print( | |
f"Detected {model.config.id2label[label.item()]} with confidence " | |
f"{round(score.item(), 3)} at location {box}") | |
label_.append(model.config.id2label[label.item()]) | |
bboxes.append(np.asarray(box,dtype="int")) | |
bboxes = torch.tensor(bboxes, dtype=torch.int) | |
bboxes = torch.tensor(bboxes, dtype=torch.int) | |
img=draw_bounding_boxes(image, bboxes,labels = label_, width=3) | |
img = torchvision.transforms.ToPILImage()(img) | |
return img | |
def resnet_50(name): | |
image = read_image(name) | |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# convert outputs (bounding boxes and class logits) to COCO API | |
# let's only keep detections with score > 0.9 | |
target_sizes = torch.tensor([image.shape[::-1][:2]]) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0] | |
label_ = [] | |
bboxes = [] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
print( | |
f"Detected {model.config.id2label[label.item()]} with confidence " | |
f"{round(score.item(), 3)} at location {box}" | |
) | |
label_.append(model.config.id2label[label.item()]) | |
bboxes.append(np.asarray(box,dtype="int")) | |
bboxes = torch.tensor(bboxes, dtype=torch.int) | |
bboxes = torch.tensor(bboxes, dtype=torch.int) | |
img=draw_bounding_boxes(image, bboxes,labels = label_, width=3) | |
img = torchvision.transforms.ToPILImage()(img) | |
return img | |
def object_detection(): | |
# st.write("Upload your image: ") | |
# uploaded_files = "" | |
# uploaded_files = st.file_uploader("Choose a image file", accept_multiple_files=True) | |
option = st.selectbox( | |
'What image you want for analysis?', | |
("Choose an image for object detection analysis from the options below:",'Cat and Dog', '2 lazy cats chilling on a couch', 'An astronaut riding wild horse')) | |
if option == 'Cat and Dog' or option == '2 lazy cats chilling on a couch' or option == 'An astronaut riding wild horse': | |
st.write('You selected:', option) | |
st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True) | |
if option == 'Cat and Dog': | |
name = "cat_dog.jpg" | |
st.image("cat_dog.jpg") | |
st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True) | |
if option == '2 lazy cats chilling on a couch': | |
name = "cat_remote.jpg" | |
st.image("cat_remote.jpg") | |
st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True) | |
if option == 'An astronaut riding wild horse': | |
name = "astronaut_rides_horse.png" | |
st.image("astronaut_rides_horse.png") | |
st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True) | |
if st.button("Accept"): | |
# global file_data | |
# st.write("filename:", uploaded_files) | |
# for uploaded_file in uploaded_files: | |
# print("here") | |
# file_data = open(uploaded_file.name).read() | |
st.write("filename:", name) | |
# name = uploaded_file.name | |
st.image([yolo_tiny(name),resnet_101(name),resnet_50(name)],caption=["hustvl/yolos-tiny","facebook/detr-resnet-101","facebook/detr-resnet-50"]) | |
def task_categorization_model_predictions(): | |
st.image("./panelup.png") | |
# st.title("Text Analysis App") | |
data = "" | |
classifier = pipeline("zero-shot-classification",model="facebook/bart-large-mnli") | |
global check | |
st.markdown(f'<p style="color: #012d51;font-size:18px;border-radius:%;">{"Write down below the description of your AI application in few sentences:"}</p>', unsafe_allow_html=True) | |
prompt = st.text_input(" ") | |
st.write("") | |
st.write("") | |
if prompt != "": | |
# sbert_saved_model = torch.load("Sbert_saved_model", map_location=torch.device('cpu')).to("cpu") | |
# model = sbert_saved_model.to("cpu") | |
# tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2") | |
# pipe = TextClassificationPipeline(model= model, tokenizer=tokenizer, return_all_scores=True) | |
# # outputs a list of dicts like [[{'label': 'NEGATIVE', 'score': 0.0001223755971295759}, {'label': 'POSITIVE', 'score': 0.9998776316642761}]] | |
# # prompt = ["What is the the best ai for putting text report into data table?","How can I generate car sales agreement with ai model?","AI model to detect burglar on 48 hours of cctv video footage","I need Ai model help me with rewriting 50 financial statements emails into one summary report ?","I need a model for extracting person from an image"] | |
# # responses = pipe(prompt) | |
# models_list = pd.read_csv("models.csv") | |
# # st.write(get_top_3(prompt)) | |
# top_cat, top_models = get_top_3(prompt) | |
# # prompt = input("Enter your AI task idea:") | |
# # top_cats,cat_to_models = get_models(prompt) | |
# # top_models = cat_to_models[top_cats[0]] | |
# top_cat = " " + top_cat[0].upper() + top_cat[1:] | |
st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Recognized AI Domain: "}</p>', unsafe_allow_html=True) | |
domains = ["Computer Vision Task","Natural Language Processing Problem","Audio Operations Problem","Tabular Data Task","Reinforcement Learning Problem","Time Series Forecasting Problem"] | |
#st.write(classifier(prompt, domains)) | |
domain = classifier(prompt, domains)["labels"][0] | |
st.markdown(f'<p style="background-color:#12d51; color:#1782ea;font-size:18px;border-radius:%;">{domain}</p>', unsafe_allow_html=True) | |
# st.write("Recommended AI Domain Type: ",top_cat) | |
check = 0 | |
if st.button("This seems accurate"): | |
check = 1 | |
if st.button("Show me other likely category recommendations:"): | |
if domain == "Tabular Data Problem": | |
if st.button("Computer Vision Task"): | |
domain = "Computer Vision Task" | |
check = 1 | |
if st.button("Natural Language Processing Problem"): | |
domain = "Natural Language Processing Problem" | |
check = 1 | |
if st.button("Multimodal AI Model"): | |
domain = "Multimodal AI Model" | |
check = 1 | |
if st.button("Audio Operations Problem"): | |
domain = "Audio Operations Problem" | |
check = 1 | |
# if st.button("Tabular Data Task"): | |
# domain = "Tabular Data Task" | |
if st.button("Reinforcement Learning Problem"): | |
domain = "Reinforcement Learning Problem" | |
check = 1 | |
if st.button("Time Series Forecasting Problem"): | |
domain = "Time Series Forecasting Problem" | |
check = 1 | |
if domain == "Computer Vision Task": | |
# if st.button("Computer Vision Task"): | |
# domain = "Computer Vision Task" | |
if st.button("Natural Language Processing Problem"): | |
domain = "Natural Language Processing Problem" | |
check = 1 | |
if st.button("Multimodal AI Model"): | |
domain = "Multimodal AI Model" | |
check = 1 | |
if st.button("Audio Operations Problem"): | |
domain = "Audio Operations Problem" | |
check = 1 | |
if st.button("Tabular Data Task"): | |
domain = "Tabular Data Task" | |
check = 1 | |
if st.button("Reinforcement Learning Problem"): | |
domain = "Reinforcement Learning Problem" | |
check = 1 | |
if st.button("Time Series Forecasting Problem"): | |
domain = "Time Series Forecasting Problem" | |
check = 1 | |
if domain == "Natural Language Processing Problem": | |
if st.button("Computer Vision Task"): | |
domain = "Computer Vision Task" | |
check = 1 | |
# if st.button("Natural Language Processing Problem"): | |
# domain = "Natural Language Processing Problem" | |
if st.button("Multimodal AI Model"): | |
domain = "multimodal" | |
check = 1 | |
if st.button("Audio Operations Problem"): | |
domain = "Audio Operations Problem" | |
check = 1 | |
if st.button("Tabular Data Task"): | |
domain = "Tabular Data Task" | |
check = 1 | |
if st.button("Reinforcement Learning Problem"): | |
domain = "Reinforcement Learning Problem" | |
check = 1 | |
if st.button("Time Series Forecasting Problem"): | |
domain = "Time Series Forecasting Problem" | |
check = 1 | |
if domain == "Multimodal AI Model": | |
if st.button("Computer Vision Task"): | |
domain = "Computer Vision Task" | |
check = 1 | |
if st.button("Natural Language Processing Problem"): | |
domain = "Natural Language Processing Problem" | |
check = 1 | |
# if st.button("Multimodal AI Model"): | |
# domain = "Multimodal AI Model" | |
if st.button("Audio Operations Problem"): | |
domain = "Audio Operations Problem" | |
check = 1 | |
if st.button("Tabular Data Task"): | |
domain = "Tabular Data Task" | |
check = 1 | |
if st.button("Reinforcement Learning Problem"): | |
domain = "Reinforcement Learning Problem" | |
check = 1 | |
if st.button("Time Series Forecasting Problem"): | |
domain = "Time Series Forecasting Problem" | |
check = 1 | |
if domain == "audio": | |
if st.button("Computer Vision Task"): | |
domain = "Computer Vision Task" | |
check = 1 | |
if st.button("Natural Language Processing Problem"): | |
domain = "Natural Language Processing Problem" | |
check = 1 | |
if st.button("Multimodal AI Model"): | |
domain = "Multimodal AI Model" | |
check = 1 | |
# if st.button("Audio Operations Problem"): | |
# domain = "Audio Operations Problem" | |
if st.button("Tabular Data Task"): | |
domain = "Tabular Data Task" | |
check = 1 | |
if st.button("Reinforcement Learning Problem"): | |
domain = "Reinforcement Learning Problem" | |
check = 1 | |
if st.button("Time Series Forecasting Problem"): | |
domain = "Time Series Forecasting Problem" | |
check = 1 | |
if domain == "reinforcement-learning": | |
if st.button("Computer Vision Task"): | |
domain = "Computer Vision Task" | |
check = 1 | |
if st.button("Natural Language Processing Problem"): | |
domain = "Natural Language Processing Problem" | |
check = 1 | |
if st.button("Multimodal AI Model"): | |
domain = "multimodal" | |
check = 1 | |
if st.button("Audio Operations Problem"): | |
domain = "Audio Operations Problem" | |
check = 1 | |
if st.button("Tabular Data Task"): | |
domain = "Tabular Data Task" | |
check = 1 | |
# if st.button("Reinforcement Learning Problem"): | |
# domain = "Reinforcement Learning Problem" | |
if st.button("Time Series Forecasting Problem"): | |
domain = "Time Series Forecasting Problem" | |
check = 1 | |
if domain == "Time Series Forecasting": | |
if st.button("Computer Vision Task"): | |
domain = "Computer Vision Task" | |
check = 1 | |
if st.button("Natural Language Processing Problem"): | |
domain = "Natural Language Processing Problem" | |
check = 1 | |
if st.button("Multimodal AI Model"): | |
domain = "Multimodal AI Model" | |
check = 1 | |
if st.button("Audio Operations Problem"): | |
domain = "Audio Operations Problem" | |
check = 1 | |
if st.button("Tabular Data Task"): | |
domain = "Tabular Data Task" | |
check = 1 | |
if st.button("Reinforcement Learning Problem"): | |
domain = "Reinforcement Learning Problem" | |
check = 1 | |
# if st.button("Time Series Forecasting Problem"): | |
# domain = "Time Series Forecasting Problem" | |
# st.write("Recommended Models for category: ",top_cats[0], " are:",top_models) | |
# st.write("Recommended Task category: ",top_models[0]) | |
knowledge_base_tasks = {"Computer Vision Task":['depth-estimation', 'image-classification', 'image-segmentation', | |
'image-to-image', 'object-detection', 'video-classification', | |
'unconditional-image-generation', 'zero-shot-image-classification'],"Natural Language Processing Problem":[ | |
'conversational', 'fill-mask', 'question-answering', | |
'sentence-similarity', 'summarization', 'table-question-answering', | |
'text-classification', 'text-generation', 'token-classification', | |
'translation', 'zero-shot-classification'],"Audio Operations Problem":["audio-classification","audio-to-audio","automatic-speech-recognition", | |
"text-to-speech"],"Tabular Data Task":["tabular-classification","tabular-regression"],"others":["document-question-answering", | |
"feature-extraction","image-to-text","text-to-image","text-to-video","visual-question-answering"], | |
"Reinforcement Learning Problem":["reinforcement-learning"],"time-series-forecasting":["time-series-forecasting"]} | |
# st.write(check) | |
# st.write(domain) | |
if check == 1: | |
category = classifier(prompt, knowledge_base_tasks[domain])["labels"][0] | |
st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Recognized sub category in Domain: "+domain}</p>', unsafe_allow_html=True) | |
st.markdown(f'<p style="background-color:#12d51; color:#1782ea;font-size:18px;border-radius:%;">{category}</p>', unsafe_allow_html=True) | |
top_models = get_top_3(category) | |
#st.write(top_models) | |
st.markdown(f'<p style=" margin-left: 0px;color: #012d51;font-size:18px;border-radius:%;">{"The best models selected for this domain:"}</p>', unsafe_allow_html=True) | |
st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"1- "+top_models[0]}</p>', unsafe_allow_html=True) | |
st.image("./buttons1.png") | |
# if st.button("Show more"): | |
st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"2- "+top_models[1]}</p>', unsafe_allow_html=True) | |
st.image("./buttons1.png") | |
st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"3- "+top_models[2]}</p>', unsafe_allow_html=True) | |
st.image("./buttons1.png") | |
def model_selector_sbert(): | |
# st.title("Text Analysis App") | |
data = "" | |
st.title("AI Model Recommender 🧠") | |
st.write("""Enter a brief description of your task, and this app will recommend an AI model for you!""") | |
st.image("./panelup.png") | |
# st.markdown(f'<p style="color: #012d51;font-size:18px;border-radius:%;">{"Please, describe your AI application below:"}</p>', unsafe_allow_html=True) | |
prompt = st.text_area("Describe your task:") | |
st.write("") | |
st.write("") | |
if st.button("Recommend Model"): | |
if prompt != "": | |
sbert_saved_model = torch.load("Sbert_saved_model", map_location=torch.device('cpu')).to("cpu") | |
model = sbert_saved_model.to("cpu") | |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2") | |
pipe = TextClassificationPipeline(model= model, tokenizer=tokenizer, return_all_scores=True) | |
# outputs a list of dicts like [[{'label': 'NEGATIVE', 'score': 0.0001223755971295759}, {'label': 'POSITIVE', 'score': 0.9998776316642761}]] | |
# prompt = ["What is the the best ai for putting text report into data table?","How can I generate car sales agreement with ai model?","AI model to detect burglar on 48 hours of cctv video footage","I need Ai model help me with rewriting 50 financial statements emails into one summary report ?","I need a model for extracting person from an image"] | |
# responses = pipe(prompt) | |
models_list = pd.read_csv("models.csv") | |
# st.write(get_top_3(prompt)) | |
top_cat, top_models = get_top_3_a(prompt,pipe) | |
# prompt = input("Enter your AI task idea:") | |
# top_cats,cat_to_models = get_models(prompt) | |
# top_models = cat_to_models[top_cats[0]] | |
top_cat = " " + top_cat[0].upper() + top_cat[1:] | |
st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Recognized AI Domain Category: "}</p>', unsafe_allow_html=True) | |
st.markdown(f'<p style="background-color:#12d51; color:#1782ea;font-size:18px;border-radius:%;">{top_cat}</p>', unsafe_allow_html=True) | |
# st.write("Recommended AI Domain Type: ",top_cat) | |
# st.write("Recommended Models for category: ",top_cats[0], " are:",top_models) | |
# st.write("Recommended Task category: ",top_models[0]) | |
st.markdown(f'<p style=" margin-left: 0px;color: #012d51;font-size:18px;border-radius:%;">{"The best models selected for this task:"}</p>', unsafe_allow_html=True) | |
st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"1- "+top_models[0]}</p>', unsafe_allow_html=True) | |
st.image("./buttons1.png") | |
if st.button("Show more"): | |
st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"2- "+top_models[1]}</p>', unsafe_allow_html=True) | |
st.image("./buttons1.png") | |
st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"3- "+top_models[2]}</p>', unsafe_allow_html=True) | |
st.image("./buttons1.png") | |
page_names_to_funcs = { | |
"Select the best Model for your AI app":model_selector_sbert, | |
"Compare Model Outputs on Object Detection": object_detection, | |
"Compare Model Outputs on Text Summarization": text_summarization | |
} | |
demo_name = st.sidebar.selectbox("Choose a demo of model selector or compare inference outputs:", page_names_to_funcs.keys()) | |
page_names_to_funcs[demo_name]() |