Spaces:
Running
Running
import streamlit as st | |
import time | |
# Streamlit App | |
st.title("AI Model Deployment π") | |
# Intro | |
st.write(""" | |
Welcome to the AI model deployment flow! Here, we'll follow the process of deploying | |
your fine-tuned AI model to one of the cloud instances. Let's begin! | |
""") | |
# Select cloud provider | |
cloud_provider = st.selectbox("Choose a cloud provider:", ["AWS EC2", "Google Cloud VM", "Azure VM"]) | |
st.write(f"You've selected {cloud_provider}!") | |
# Specify model details | |
model_name = st.text_input("Enter your AI model name:", "MySpecialModel") | |
if model_name: | |
st.write(f"We'll deploy the model named: {model_name}") | |
# Button to start the deployment | |
if st.button("Start Deployment"): | |
st.write("Deployment started... Please wait!") | |
# Simulate progress bar for deployment | |
latest_iteration = st.empty() | |
bar = st.progress(0) | |
for i in range(100): | |
# Update the progress bar with each iteration. | |
latest_iteration.text(f"Deployment progress: {i+1}%") | |
bar.progress(i + 1) | |
time.sleep(0.05) | |
st.write(f"Deployment completed! Your model {model_name} is now live on {cloud_provider} π") | |
# Sidebar for additional settings (pretend configurations) | |
st.sidebar.title("Deployment Settings") | |
instance_type = st.sidebar.selectbox("Instance Type:", ["Standard", "High Memory", "High CPU", "GPU"]) | |
storage_option = st.sidebar.slider("Storage Size (in GB):", 10, 500, 50) | |
st.sidebar.write(f"Instance Type: {instance_type}") | |
st.sidebar.write(f"Storage Size: {storage_option} GB") |