Spaces:
Sleeping
Sleeping
File size: 12,359 Bytes
ac35dc9 6bdf49f ac35dc9 6bdf49f ac35dc9 6bdf49f ac35dc9 6bdf49f ac35dc9 6bdf49f ac35dc9 6bdf49f ac35dc9 6bdf49f ac35dc9 6bdf49f ac35dc9 6bdf49f c8a0e87 ac35dc9 7c30d23 ac35dc9 e37ae0d c8a0e87 e37ae0d c8a0e87 7c30d23 ac35dc9 7c30d23 ac35dc9 7c30d23 c0480f8 7c30d23 f65d82a ac35dc9 7c30d23 ac35dc9 f65d82a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
from langchain.chains import create_sql_query_chain
from transformers import AutoModelForCausalLM, AutoTokenizer,pipeline, LlamaTokenizer, LlamaForCausalLM
from langchain_huggingface import HuggingFacePipeline
from langchain_openai import ChatOpenAI
import os
from langchain_community.utilities.sql_database import SQLDatabase
from operator import itemgetter
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder,FewShotChatMessagePromptTemplate,PromptTemplate
from langchain_community.vectorstores import Chroma
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings
from operator import itemgetter
from langchain.chains.openai_tools import create_extraction_chain_pydantic
from langchain_core.pydantic_v1 import BaseModel, Field
from typing import List
import pandas as pd
from argparse import ArgumentParser
import json
from langchain.memory import ChatMessageHistory
from langchain_community.tools.sql_database.tool import QuerySQLDataBaseTool
import subprocess
import sys
from transformers import pipeline
import librosa
import soundfile
import datasets
# import sounddevice as sd
import numpy as np
import io
import gradio as gr
model_id = "avnishkanungo/whisper-small-dv" # update with your model id
pipe = pipeline("automatic-speech-recognition", model=model_id)
def sql_translator(filepath, key):
def select_table(desc_path):
def get_table_details():
# Read the CSV file into a DataFrame
table_description = pd.read_csv(desc_path) ##"/teamspace/studios/this_studio/database_table_descriptions.csv"
table_docs = []
# Iterate over the DataFrame rows to create Document objects
table_details = ""
for index, row in table_description.iterrows():
table_details = table_details + "Table Name:" + row['Table'] + "\n" + "Table Description:" + row['Description'] + "\n\n"
return table_details
class Table(BaseModel):
"""Table in SQL database."""
name: str = Field(description="Name of table in SQL database.")
table_details_prompt = f"""Return the names of ALL the SQL tables that MIGHT be relevant to the user question. \
The tables are:
{get_table_details()}
Remember to include ALL POTENTIALLY RELEVANT tables, even if you're not sure that they're needed."""
table_chain = create_extraction_chain_pydantic(Table, llm, system_message=table_details_prompt)
def get_tables(tables: List[Table]) -> List[str]:
tables = [table.name for table in tables]
return tables
select_table = {"input": itemgetter("question")} | create_extraction_chain_pydantic(Table, llm, system_message=table_details_prompt) | get_tables
return select_table
def prompt_creation(example_path):
with open(example_path, 'r') as file: ##'/teamspace/studios/this_studio/few_shot_samples.json'
data = json.load(file)
examples = data["examples"]
example_prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}\nSQLQuery:"),
("ai", "{query}"),
]
)
vectorstore = Chroma()
vectorstore.delete_collection()
example_selector = SemanticSimilarityExampleSelector.from_examples(
examples,
OpenAIEmbeddings(),
vectorstore,
k=2,
input_keys=["input"],
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
example_prompt=example_prompt,
example_selector=example_selector,
input_variables=["input","top_k"],
)
final_prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a MySQL expert. Given an input question, create a syntactically correct MySQL query to run. Unless otherwise specificed.\n\nHere is the relevant table info: {table_info}\n\nBelow are a number of examples of questions and their corresponding SQL queries."),
few_shot_prompt,
MessagesPlaceholder(variable_name="messages"),
("human", "{input}"),
]
)
print(few_shot_prompt.format(input="How many products are there?"))
return final_prompt
def rephrase_answer():
answer_prompt = PromptTemplate.from_template(
"""Given the following user question, corresponding SQL query, and SQL result, answer the user question.
Question: {question}
SQL Query: {query}
SQL Result: {result}
Answer: """
)
rephrase_answer = answer_prompt | llm | StrOutputParser()
return rephrase_answer
def is_ffmpeg_installed():
try:
# Run `ffmpeg -version` to check if ffmpeg is installed
subprocess.run(['ffmpeg', '-version'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
def install_ffmpeg():
try:
if sys.platform.startswith('linux'):
subprocess.run(['sudo', 'apt-get', 'update'], check=True)
subprocess.run(['sudo', 'apt-get', 'install', '-y', 'ffmpeg'], check=True)
elif sys.platform == 'darwin': # macOS
subprocess.run(['/bin/bash', '-c', 'brew install ffmpeg'], check=True)
elif sys.platform == 'win32':
print("Please download ffmpeg from https://ffmpeg.org/download.html and install it manually.")
return False
else:
print("Unsupported OS. Please install ffmpeg manually.")
return False
except subprocess.CalledProcessError as e:
print(f"Failed to install ffmpeg: {e}")
return False
return True
def transcribe_speech(filepath):
output = pipe(
filepath,
max_new_tokens=256,
generate_kwargs={
"task": "transcribe",
"language": "english",
}, # update with the language you've fine-tuned on
chunk_length_s=30,
batch_size=8,
)
return output["text"]
# def record_command():
# sample_rate = 16000 # Sample rate in Hz
# duration = 8 # Duration in seconds
# print("Recording...")
# # Record audio
# audio = sd.rec(int(sample_rate * duration), samplerate=sample_rate, channels=1, dtype='float32')
# sd.wait() # Wait until recording is finished
# print("Recording finished")
# # Convert the audio to a binary stream and save it to a variable
# audio_buffer = io.BytesIO()
# soundfile.write(audio_buffer, audio, sample_rate, format='WAV')
# audio_buffer.seek(0) # Reset buffer position to the beginning
# # The audio file is now saved in audio_buffer
# # You can read it again using soundfile or any other audio library
# audio_data, sample_rate = soundfile.read(audio_buffer)
# # Optional: Save the audio to a file for verification
# # with open('recorded_audio.wav', 'wb') as f:
# # f.write(audio_buffer.getbuffer())
# print("Audio saved to variable")
# return audio_data
def check_libportaudio_installed():
try:
# Run `ffmpeg -version` to check if ffmpeg is installed
subprocess.run(['libportaudio2', '-version'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
def install_libportaudio():
try:
if sys.platform.startswith('linux'):
subprocess.run(['sudo', 'apt-get', 'update'], check=True)
subprocess.run(['sudo', 'apt-get', 'install', '-y', 'libportaudio2'], check=True)
elif sys.platform == 'darwin': # macOS
subprocess.run(['/bin/bash', '-c', 'brew install portaudio'], check=True)
elif sys.platform == 'win32':
print("Please download ffmpeg from https://ffmpeg.org/download.html and install it manually.")
return False
else:
print("Unsupported OS. Please install ffmpeg manually.")
return False
except subprocess.CalledProcessError as e:
print(f"Failed to install ffmpeg: {e}")
return False
return True
db_user = "admin"
db_password = "avnishk96"
db_host = "demo-db.cdm44iseol25.us-east-1.rds.amazonaws.com"
db_name = "classicmodels"
db = SQLDatabase.from_uri(f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}")
# print(db.dialect)
# print(db.get_usable_table_names())
# print(db.table_info)
os.environ["OPENAI_API_KEY"] = key
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
history = ChatMessageHistory()
final_prompt = prompt_creation(os.getcwd()+"/few_shot_samples.json")
generate_query = create_sql_query_chain(llm, db, final_prompt)
execute_query = QuerySQLDataBaseTool(db=db)
# if is_ffmpeg_installed():
# print("ffmpeg is already installed.")
# else:
# print("ffmpeg is not installed. Installing ffmpeg...")
# if install_ffmpeg():
# print("ffmpeg installation successful.")
# else:
# print("ffmpeg installation failed. Please install it manually.")
# if check_libportaudio_installed():
# print("libportaudio is already installed.")
# else:
# print("libportaudio is not installed. Installing ffmpeg...")
# if install_libportaudio():
# print("libportaudio installation successful.")
# else:
# print("libportaudio installation failed. Please install it manually.")
if os.path.isfile(filepath):
sql_query = transcribe_speech(filepath)
else:
sql_query = filepath
# sql_query = transcribe_speech(filepath)
chain = (
RunnablePassthrough.assign(table_names_to_use=select_table(os.getcwd()+"/database_table_descriptions.csv")) |
RunnablePassthrough.assign(query=generate_query).assign(
result=itemgetter("query") | execute_query
)
| rephrase_answer()
)
output = chain.invoke({"question": sql_query, "messages":history.messages})
history.add_user_message(sql_query)
history.add_ai_message(output)
return output
def create_interface():
demo = gr.Blocks()
mic_transcribe = gr.Interface(
fn=sql_translator,
# key_input = gr.Textbox(lines=2, placeholder="Enter text here...", label="Open AI Key"),
# audio_input = gr.Audio(sources="microphone", type="filepath"),
inputs = [gr.Audio(sources="microphone", type="filepath"),gr.Textbox(lines=2, placeholder="Enter text here...", label="Open AI Key")],
outputs=gr.components.Textbox(),
)
file_transcribe = gr.Interface(
fn=sql_translator,
# key_input = gr.Textbox(lines=2, placeholder="Enter text here...", label="Open AI Key"),
# query_input = gr.Textbox(lines=2, placeholder="Enter text here...", label="Input Text..."),
inputs = [gr.Textbox(lines=2, placeholder="Enter text here...", label="Input Text...") ,gr.Textbox(lines=2, placeholder="Enter text here...", label="Open AI Key")],
# inputs=gr.Audio(sources="upload", type="filepath"),
outputs=gr.components.Textbox(),
)
with demo:
gr.TabbedInterface(
[mic_transcribe, file_transcribe],
["Audio Query", "Text Query"],
)
demo.launch(share=True)
# return interface
if __name__ == "__main__":
interface = create_interface()
# interface.launch(debug=True) |