File size: 6,881 Bytes
375ee53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427f665
 
 
 
375ee53
 
 
427f665
375ee53
 
 
 
 
 
 
 
 
 
 
 
ee60c56
375ee53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a74b1
 
375ee53
 
46a74b1
 
375ee53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a74b1
 
 
ab8caaa
375ee53
 
 
ab8caaa
 
46a74b1
 
 
ab8caaa
 
46a74b1
 
ab8caaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375ee53
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import tempfile

import gradio as gr
import numpy as np
from launch.utils import find_cuda
import spaces
import torch
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from einops import rearrange
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from torchvision.transforms import v2

from instantMesh.src.utils.camera_util import (FOV_to_intrinsics, get_circular_camera_poses,
                                               get_zero123plus_input_cameras)
from instantMesh.src.utils.mesh_util import save_glb, save_obj
from instantMesh.src.utils.train_util import instantiate_from_config

# Configuration
cuda_path = find_cuda()
config_path = 'instantMesh/configs/instant-mesh-large.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config

IS_FLEXICUBES = config_name.startswith('instant-mesh')
device = torch.device('cuda')

# Load diffusion model
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.2",
    custom_pipeline="./instantMesh/zero123plus",
    torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
    pipeline.scheduler.config, timestep_spacing='trailing'
)

unet_ckpt_path = hf_hub_download(
    repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)

pipeline = pipeline.to(device)

# Load reconstruction model
print('Loading reconstruction model ...')
model_ckpt_path = hf_hub_download(
    repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
model = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith(
    'lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)

model = model.to(device)


def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
    c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
    if is_flexicubes:
        cameras = torch.linalg.inv(c2ws)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
    else:
        extrinsics = c2ws.flatten(-2)
        intrinsics = FOV_to_intrinsics(50.0).unsqueeze(
            0).repeat(M, 1, 1).float().flatten(-2)
        cameras = torch.cat([extrinsics, intrinsics], dim=-1)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
    return cameras


@spaces.GPU
def generate_mvs(input_image):
    sample_seed = np.random.randint(0, 1000000)
    seed_everything(sample_seed)

    sample_steps = 75

    z123_image = pipeline(
        input_image, num_inference_steps=sample_steps).images[0]

    show_image = np.asarray(z123_image, dtype=np.uint8)
    show_image = torch.from_numpy(show_image)
    show_image = rearrange(
        show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
    show_image = rearrange(
        show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
    show_image = Image.fromarray(show_image.numpy())

    return z123_image, show_image


@spaces.GPU
def make3d(images):
    global model
    if IS_FLEXICUBES:
        model.init_flexicubes_geometry(device, use_renderer=False)
    model = model.eval()

    images = np.asarray(images, dtype=np.float32) / 255.0
    images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
    images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)

    input_cameras = get_zero123plus_input_cameras(
        batch_size=1, radius=4.0).to(device)
    render_cameras = get_render_cameras(
        batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)

    images = images.unsqueeze(0).to(device)
    images = v2.functional.resize(
        images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)

    mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
    print(mesh_fpath)
    mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")

    with torch.no_grad():
        planes = model.forward_planes(images, input_cameras)
        mesh_out = model.extract_mesh(
            planes, use_texture_map=False, **infer_config)

        vertices, faces, vertex_colors = mesh_out
        vertices = vertices[:, [1, 2, 0]]

        save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
        save_obj(vertices, faces, vertex_colors, mesh_fpath)

        print(f"Mesh saved to {mesh_fpath}")

    return mesh_fpath, mesh_glb_fpath


def model_generation_ui(processed_image):
    with gr.Column():
        with gr.Row():
            submit_mesh = gr.Button(
                "Generate 3D Model", elem_id="generate", variant="primary")

        with gr.Row():
            with gr.Column():
                mv_show_images = gr.Image(
                    label="Generated Multi-views", type="pil", interactive=False)

            with gr.Column():
                with gr.Tab("OBJ"):
                    output_model_obj = gr.Model3D(
                        label="Output Model (OBJ Format)", interactive=False)

                with gr.Tab("GLB"):
                    output_model_glb = gr.Model3D(
                        label="Output Model (GLB Format)", interactive=False)

        mv_images = gr.State()

        # Display a message if the processed image is empty
        empty_image_message = gr.Markdown(
            visible=False,
            value="Please generate a 2D image before generating a 3D model."
        )

        def check_image(processed_image):
            if processed_image is None:
                return {
                    empty_image_message: gr.update(visible=True),
                    submit_mesh: gr.update(interactive=False)
                }
            else:
                return {
                    empty_image_message: gr.update(visible=False),
                    submit_mesh: gr.update(interactive=True)
                }

        processed_image.change(
            fn=check_image,
            inputs=[processed_image],
            outputs=[empty_image_message, submit_mesh]
        )

        submit_mesh.click(
            fn=generate_mvs,
            inputs=[processed_image],
            outputs=[mv_images, mv_show_images]
        ).success(
            fn=make3d,
            inputs=[mv_images],
            outputs=[output_model_obj, output_model_glb]
        )

    return output_model_obj, output_model_glb