Create new file
Browse files- summarize.py +133 -0
summarize.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from tqdm.auto import tqdm
|
5 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
+
|
7 |
+
|
8 |
+
def load_model_and_tokenizer(model_name):
|
9 |
+
"""
|
10 |
+
load_model_and_tokenizer - a function that loads a model and tokenizer from huggingface
|
11 |
+
Args:
|
12 |
+
model_name (str): the name of the model to load
|
13 |
+
Returns:
|
14 |
+
AutoModelForSeq2SeqLM: the model
|
15 |
+
AutoTokenizer: the tokenizer
|
16 |
+
"""
|
17 |
+
|
18 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
# low_cpu_mem_usage=True,
|
21 |
+
# use_cache=False,
|
22 |
+
)
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
+
model = model.to("cuda") if torch.cuda.is_available() else model
|
25 |
+
|
26 |
+
logging.info(f"Loaded model {model_name}")
|
27 |
+
return model, tokenizer
|
28 |
+
|
29 |
+
|
30 |
+
def summarize_and_score(ids, mask, model, tokenizer, **kwargs):
|
31 |
+
"""
|
32 |
+
summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary
|
33 |
+
Args:
|
34 |
+
ids (): the batch of ids
|
35 |
+
mask (): the attention mask for the batch
|
36 |
+
model (): the model to use for summarization
|
37 |
+
tokenizer (): the tokenizer to use for summarization
|
38 |
+
Returns:
|
39 |
+
str: the summary of the batch
|
40 |
+
"""
|
41 |
+
|
42 |
+
ids = ids[None, :]
|
43 |
+
mask = mask[None, :]
|
44 |
+
|
45 |
+
input_ids = ids.to("cuda") if torch.cuda.is_available() else ids
|
46 |
+
attention_mask = mask.to("cuda") if torch.cuda.is_available() else mask
|
47 |
+
|
48 |
+
global_attention_mask = torch.zeros_like(attention_mask)
|
49 |
+
# put global attention on <s> token
|
50 |
+
global_attention_mask[:, 0] = 1
|
51 |
+
|
52 |
+
summary_pred_ids = model.generate(
|
53 |
+
input_ids,
|
54 |
+
attention_mask=attention_mask,
|
55 |
+
global_attention_mask=global_attention_mask,
|
56 |
+
output_scores=True,
|
57 |
+
return_dict_in_generate=True,
|
58 |
+
**kwargs,
|
59 |
+
)
|
60 |
+
summary = tokenizer.batch_decode(
|
61 |
+
summary_pred_ids.sequences,
|
62 |
+
skip_special_tokens=True,
|
63 |
+
remove_invalid_values=True,
|
64 |
+
)
|
65 |
+
score = round(summary_pred_ids.sequences_scores.cpu().numpy()[0], 4)
|
66 |
+
|
67 |
+
return summary, score
|
68 |
+
|
69 |
+
|
70 |
+
def summarize_via_tokenbatches(
|
71 |
+
input_text: str,
|
72 |
+
model,
|
73 |
+
tokenizer,
|
74 |
+
batch_length=2048,
|
75 |
+
batch_stride=16,
|
76 |
+
**kwargs,
|
77 |
+
):
|
78 |
+
"""
|
79 |
+
summarize_via_tokenbatches - a function that takes a string and returns a summary
|
80 |
+
Args:
|
81 |
+
input_text (str): the text to summarize
|
82 |
+
model (): the model to use for summarization
|
83 |
+
tokenizer (): the tokenizer to use for summarization
|
84 |
+
batch_length (int, optional): the length of each batch. Defaults to 2048.
|
85 |
+
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
|
86 |
+
Returns:
|
87 |
+
str: the summary
|
88 |
+
"""
|
89 |
+
# log all input parameters
|
90 |
+
if batch_length < 512:
|
91 |
+
batch_length = 512
|
92 |
+
print("WARNING: batch_length was set to 512")
|
93 |
+
print(
|
94 |
+
f"input parameters: {kwargs}, batch_length={batch_length}, batch_stride={batch_stride}"
|
95 |
+
)
|
96 |
+
encoded_input = tokenizer(
|
97 |
+
input_text,
|
98 |
+
padding="max_length",
|
99 |
+
truncation=True,
|
100 |
+
max_length=batch_length,
|
101 |
+
stride=batch_stride,
|
102 |
+
return_overflowing_tokens=True,
|
103 |
+
add_special_tokens=False,
|
104 |
+
return_tensors="pt",
|
105 |
+
)
|
106 |
+
|
107 |
+
in_id_arr, att_arr = encoded_input.input_ids, encoded_input.attention_mask
|
108 |
+
gen_summaries = []
|
109 |
+
|
110 |
+
pbar = tqdm(total=len(in_id_arr))
|
111 |
+
|
112 |
+
for _id, _mask in zip(in_id_arr, att_arr):
|
113 |
+
|
114 |
+
result, score = summarize_and_score(
|
115 |
+
ids=_id,
|
116 |
+
mask=_mask,
|
117 |
+
model=model,
|
118 |
+
tokenizer=tokenizer,
|
119 |
+
**kwargs,
|
120 |
+
)
|
121 |
+
score = round(float(score), 4)
|
122 |
+
_sum = {
|
123 |
+
"input_tokens": _id,
|
124 |
+
"summary": result,
|
125 |
+
"summary_score": score,
|
126 |
+
}
|
127 |
+
gen_summaries.append(_sum)
|
128 |
+
print(f"\t{result[0]}\nScore:\t{score}")
|
129 |
+
pbar.update()
|
130 |
+
|
131 |
+
pbar.close()
|
132 |
+
|
133 |
+
return gen_summaries
|