Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from pathlib import Path | |
import shutil | |
import openai | |
import autogen | |
import chromadb | |
import multiprocessing as mp | |
from autogen.retrieve_utils import TEXT_FORMATS, get_file_from_url, is_url | |
from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent | |
from autogen.agentchat.contrib.retrieve_user_proxy_agent import ( | |
RetrieveUserProxyAgent, | |
PROMPT_CODE, | |
) | |
TIMEOUT = 60 | |
def initialize_agents(config_list, docs_path=None): | |
if isinstance(config_list, gr.State): | |
_config_list = config_list.value | |
else: | |
_config_list = config_list | |
if docs_path is None: | |
docs_path = "https://raw.githubusercontent.com/microsoft/autogen/main/README.md" | |
autogen.ChatCompletion.start_logging() | |
assistant = RetrieveAssistantAgent( | |
name="assistant", | |
system_message="You are a helpful assistant.", | |
) | |
ragproxyagent = RetrieveUserProxyAgent( | |
name="ragproxyagent", | |
human_input_mode="NEVER", | |
max_consecutive_auto_reply=5, | |
retrieve_config={ | |
"task": "code", | |
"docs_path": docs_path, | |
"chunk_token_size": 2000, | |
"model": _config_list[0]["model"], | |
"client": chromadb.PersistentClient(path="/tmp/chromadb"), | |
"embedding_model": "all-mpnet-base-v2", | |
"customized_prompt": PROMPT_CODE, | |
}, | |
) | |
return assistant, ragproxyagent | |
def initiate_chat(config_list, problem, queue, n_results=3): | |
global assistant, ragproxyagent | |
if isinstance(config_list, gr.State): | |
_config_list = config_list.value | |
else: | |
_config_list = config_list | |
if len(_config_list[0].get("api_key", "")) < 2: | |
queue.put( | |
["Hi, nice to meet you! Please enter your API keys in below text boxs."] | |
) | |
return | |
else: | |
llm_config = ( | |
{ | |
"request_timeout": TIMEOUT, | |
# "seed": 42, | |
"config_list": _config_list, | |
"use_cache": False, | |
}, | |
) | |
assistant.llm_config.update(llm_config[0]) | |
assistant.reset() | |
try: | |
ragproxyagent.initiate_chat( | |
assistant, problem=problem, silent=False, n_results=n_results | |
) | |
messages = ragproxyagent.chat_messages | |
messages = [messages[k] for k in messages.keys()][0] | |
messages = [m["content"] for m in messages if m["role"] == "user"] | |
print("messages: ", messages) | |
except Exception as e: | |
messages = [str(e)] | |
queue.put(messages) | |
def chatbot_reply(input_text): | |
"""Chat with the agent through terminal.""" | |
queue = mp.Queue() | |
process = mp.Process( | |
target=initiate_chat, | |
args=(config_list, input_text, queue), | |
) | |
process.start() | |
try: | |
# process.join(TIMEOUT+2) | |
messages = queue.get(timeout=TIMEOUT) | |
except Exception as e: | |
messages = [ | |
str(e) | |
if len(str(e)) > 0 | |
else "Invalid Request to OpenAI, please check your API keys." | |
] | |
finally: | |
try: | |
process.terminate() | |
except: | |
pass | |
return messages | |
def get_description_text(): | |
return """ | |
# Microsoft AutoGen: Retrieve Chat Demo | |
This demo shows how to use the RetrieveUserProxyAgent and RetrieveAssistantAgent to build a chatbot. | |
#### [GitHub](https://github.com/microsoft/autogen) [Discord](https://discord.gg/pAbnFJrkgZ) [Blog](https://microsoft.github.io/autogen/blog/2023/10/18/RetrieveChat) [Paper](https://arxiv.org/abs/2308.08155) | |
""" | |
global assistant, ragproxyagent | |
with gr.Blocks() as demo: | |
config_list, assistant, ragproxyagent = ( | |
gr.State( | |
[ | |
{ | |
"api_key": "", | |
"api_base": "", | |
"api_type": "azure", | |
"api_version": "2023-07-01-preview", | |
"model": "gpt-35-turbo", | |
} | |
] | |
), | |
None, | |
None, | |
) | |
assistant, ragproxyagent = initialize_agents(config_list) | |
gr.Markdown(get_description_text()) | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
bubble_full_width=False, | |
avatar_images=(None, (os.path.join(os.path.dirname(__file__), "autogen.png"))), | |
# height=600, | |
) | |
txt_input = gr.Textbox( | |
scale=4, | |
show_label=False, | |
placeholder="Enter text and press enter", | |
container=False, | |
) | |
with gr.Row(): | |
def update_config(config_list): | |
global assistant, ragproxyagent | |
config_list = autogen.config_list_from_models( | |
model_list=[os.environ.get("MODEL", "gpt-35-turbo")], | |
) | |
if not config_list: | |
config_list = [ | |
{ | |
"api_key": "", | |
"api_base": "", | |
"api_type": "azure", | |
"api_version": "2023-07-01-preview", | |
"model": "gpt-35-turbo", | |
} | |
] | |
llm_config = ( | |
{ | |
"request_timeout": TIMEOUT, | |
# "seed": 42, | |
"config_list": config_list, | |
}, | |
) | |
assistant.llm_config.update(llm_config[0]) | |
ragproxyagent._model = config_list[0]["model"] | |
return config_list | |
def set_params(model, oai_key, aoai_key, aoai_base): | |
os.environ["MODEL"] = model | |
os.environ["OPENAI_API_KEY"] = oai_key | |
os.environ["AZURE_OPENAI_API_KEY"] = aoai_key | |
os.environ["AZURE_OPENAI_API_BASE"] = aoai_base | |
return model, oai_key, aoai_key, aoai_base | |
txt_model = gr.Dropdown( | |
label="Model", | |
choices=[ | |
"gpt-4", | |
"gpt-35-turbo", | |
"gpt-3.5-turbo", | |
], | |
allow_custom_value=True, | |
value="gpt-35-turbo", | |
container=True, | |
) | |
txt_oai_key = gr.Textbox( | |
label="OpenAI API Key", | |
placeholder="Enter key and press enter", | |
max_lines=1, | |
show_label=True, | |
value=os.environ.get("OPENAI_API_KEY", ""), | |
container=True, | |
type="password", | |
) | |
txt_aoai_key = gr.Textbox( | |
label="Azure OpenAI API Key", | |
placeholder="Enter key and press enter", | |
max_lines=1, | |
show_label=True, | |
value=os.environ.get("AZURE_OPENAI_API_KEY", ""), | |
container=True, | |
type="password", | |
) | |
txt_aoai_base_url = gr.Textbox( | |
label="Azure OpenAI API Base", | |
placeholder="Enter base url and press enter", | |
max_lines=1, | |
show_label=True, | |
value=os.environ.get("AZURE_OPENAI_API_BASE", ""), | |
container=True, | |
type="password", | |
) | |
clear = gr.ClearButton([txt_input, chatbot]) | |
with gr.Row(): | |
def upload_file(file): | |
return update_context_url(file.name) | |
upload_button = gr.UploadButton( | |
"Click to upload a context file or enter a url in the right textbox", | |
file_types=[f".{i}" for i in TEXT_FORMATS], | |
file_count="single", | |
) | |
txt_context_url = gr.Textbox( | |
label="Enter the url to your context file and chat on the context", | |
info=f"File must be in the format of [{', '.join(TEXT_FORMATS)}]", | |
max_lines=1, | |
show_label=True, | |
value="https://raw.githubusercontent.com/microsoft/autogen/main/README.md", | |
container=True, | |
) | |
txt_prompt = gr.Textbox( | |
label="Enter your prompt for Retrieve Agent and press enter to replace the default prompt", | |
max_lines=40, | |
show_label=True, | |
value=PROMPT_CODE, | |
container=True, | |
show_copy_button=True, | |
layout={"height": 20}, | |
) | |
def respond(message, chat_history, model, oai_key, aoai_key, aoai_base): | |
global config_list | |
set_params(model, oai_key, aoai_key, aoai_base) | |
config_list = update_config(config_list) | |
messages = chatbot_reply(message) | |
_msg = ( | |
messages[-1] | |
if len(messages) > 0 and messages[-1] != "TERMINATE" | |
else messages[-2] | |
if len(messages) > 1 | |
else "Context is not enough for answering the question. Please press `enter` in the context url textbox to make sure the context is activated for the chat." | |
) | |
chat_history.append((message, _msg)) | |
return "", chat_history | |
def update_prompt(prompt): | |
ragproxyagent.customized_prompt = prompt | |
return prompt | |
def update_context_url(context_url): | |
global assistant, ragproxyagent | |
file_extension = Path(context_url).suffix | |
print("file_extension: ", file_extension) | |
if file_extension.lower() not in [f".{i}" for i in TEXT_FORMATS]: | |
return f"File must be in the format of {TEXT_FORMATS}" | |
if is_url(context_url): | |
try: | |
file_path = get_file_from_url( | |
context_url, | |
save_path=os.path.join("/tmp", os.path.basename(context_url)), | |
) | |
except Exception as e: | |
return str(e) | |
else: | |
file_path = context_url | |
context_url = os.path.basename(context_url) | |
try: | |
shutil.rmtree("/tmp/chromadb/") | |
except: | |
pass | |
assistant, ragproxyagent = initialize_agents(config_list, docs_path=file_path) | |
return context_url | |
txt_input.submit( | |
respond, | |
[txt_input, chatbot, txt_model, txt_oai_key, txt_aoai_key, txt_aoai_base_url], | |
[txt_input, chatbot], | |
) | |
txt_prompt.submit(update_prompt, [txt_prompt], [txt_prompt]) | |
txt_context_url.submit(update_context_url, [txt_context_url], [txt_context_url]) | |
upload_button.upload(upload_file, upload_button, [txt_context_url]) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |