File size: 1,996 Bytes
e18b068 0008388 ea26717 3cfa6d8 e18b068 95288f7 e18b068 a2fb452 95288f7 4b02e76 e18b068 95288f7 e18b068 d6065c2 a2fb452 d6065c2 e18b068 2dfb08b d00b848 a2fb452 e18b068 95288f7 e18b068 a2fb452 e18b068 95288f7 e18b068 95288f7 a2fb452 5753919 e18b068 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import pandas as pd
import gradio as gr
df = pd.read_csv("images.csv")
df['url'] = df['url'].apply(lambda x: '<a href= "' + str(x) + '" target="_blank"> <img src= "' + str(x) + '"/> </a>')
df = df[[ 'url', 'prompt']]
def display_df():
df_images = df.head(1000)
return df_images
def display_df_search(search):
df_images = df.loc[df['prompt'].str.contains(search, case=False, na=False)]
#df_images = df.head(1000)
return df_images
def display_next1000(dataframe, end):
dataframe = dataframe.sample(frac=1)
start = (end or dataframe.index[-1]) + 1
end = start + 999
df_images = df.loc[start:end]
return df_images, end
def Match(name):
pd.set_option("display.max_rows", None)
data = df
swith=data.loc[data['prompt'].str.contains(name, case=False, na=False)]
return swith
with gr.Blocks() as demo:
gr.Markdown("<h1><center>🍰PrompTart🎨</center></h1>")
gr.Markdown("""<div align="center">Art Prompts from <a href = "https://playgroundai.com/">Playground</a>. <a href="https://github.com/playgroundai/liked_images">Git</a>. <a href="https://playgroundai.com/create">Create Art Here</a>. <a href="https://paperswithcode.com/datasets?q=art&v=lst&o=newest">Papers,Code,Datasets for SOTA in Art</a>""")
with gr.Row():
num_end = gr.Number(visible=False)
b1 = gr.Button("Images and Prompts 0-1000")
b2 = gr.Button("Next 1000 Images and Prompts")
with gr.Row(): # inputs and buttons
inp = gr.Textbox(lines=1, default="", label="Search")
b3 = gr.Button("Search")
with gr.Row():
out_dataframe = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate", datatype = ["markdown", "markdown"], headers=['url', 'prompt'])
b1.click(fn=display_df, outputs=out_dataframe)
b2.click(fn=display_next1000, inputs= [out_dataframe, num_end ], outputs=[out_dataframe, num_end])
b3.click(fn=display_df_search, inputs=inp, outputs=out_dataframe)
demo.launch(debug=True, show_error=True) |