Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
from einops import rearrange
|
4 |
+
import gradio as gr
|
5 |
+
import spaces
|
6 |
+
import os
|
7 |
+
import uuid
|
8 |
+
from stable_audio_tools import get_pretrained_model
|
9 |
+
from stable_audio_tools.inference.generation import generate_diffusion_cond
|
10 |
+
|
11 |
+
PAGE_SIZE = 10
|
12 |
+
FILE_DIR_PATH = "/data"
|
13 |
+
theme = gr.themes.Base(
|
14 |
+
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def load_model():
|
19 |
+
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
|
20 |
+
print("Loading model...Done")
|
21 |
+
return model, model_config
|
22 |
+
|
23 |
+
@spaces.GPU(duration=120)
|
24 |
+
def generate_audio(prompt, sampler_type_dropdown, seconds_total=30, steps=100, cfg_scale=7,sigma_min_slider=0.3,sigma_max_slider=500, progress=gr.Progress(track_tqdm=True)):
|
25 |
+
print(f"Prompt received: {prompt}")
|
26 |
+
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
|
27 |
+
|
28 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
+
print(f"Using device: {device}")
|
30 |
+
|
31 |
+
# Fetch the Hugging Face token from the environment variable
|
32 |
+
hf_token = os.getenv('HF_TOKEN')
|
33 |
+
print(f"Hugging Face token: {hf_token}")
|
34 |
+
|
35 |
+
# Use pre-loaded model and configuration
|
36 |
+
model, model_config = load_model()
|
37 |
+
sample_rate = model_config["sample_rate"]
|
38 |
+
sample_size = model_config["sample_size"]
|
39 |
+
|
40 |
+
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
|
41 |
+
|
42 |
+
model = model.to(device)
|
43 |
+
print("Model moved to device.")
|
44 |
+
|
45 |
+
# Set up text and timing conditioning
|
46 |
+
conditioning = [{
|
47 |
+
"prompt": prompt,
|
48 |
+
"seconds_start": 0,
|
49 |
+
"seconds_total": seconds_total
|
50 |
+
}]
|
51 |
+
print(f"Conditioning: {conditioning}")
|
52 |
+
|
53 |
+
print("Generating audio...")
|
54 |
+
output = generate_diffusion_cond(
|
55 |
+
model,
|
56 |
+
steps=steps,
|
57 |
+
cfg_scale=cfg_scale,
|
58 |
+
conditioning=conditioning,
|
59 |
+
sample_size=sample_size,
|
60 |
+
sigma_min=sigma_min_slider,
|
61 |
+
sigma_max=sigma_max_slider,
|
62 |
+
sampler_type=sampler_type_dropdown,#"dpmpp-3m-sde",
|
63 |
+
device=device
|
64 |
+
)
|
65 |
+
print("Audio generated.")
|
66 |
+
output = rearrange(output, "b d n -> d (b n)")
|
67 |
+
print("Audio rearranged.")
|
68 |
+
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
69 |
+
max_length = sample_rate * seconds_total
|
70 |
+
if output.shape[1] > max_length:
|
71 |
+
output = output[:, :max_length]
|
72 |
+
print(f"Audio trimmed to {seconds_total} seconds.")
|
73 |
+
random_uuid = uuid.uuid4().hex
|
74 |
+
unique_filename = f"/data/output_{random_uuid}.wav"
|
75 |
+
unique_textfile = f"/data/output_{random_uuid}.txt"
|
76 |
+
print(f"Saving audio to file: {unique_filename}")
|
77 |
+
torchaudio.save(unique_filename, output, sample_rate)
|
78 |
+
print(f"Audio saved: {unique_filename}")
|
79 |
+
with open(unique_textfile, "w") as file:
|
80 |
+
file.write(prompt)
|
81 |
+
return unique_filename
|
82 |
+
|
83 |
+
def list_all_outputs(generation_history):
|
84 |
+
directory_path = FILE_DIR_PATH
|
85 |
+
files_in_directory = os.listdir(directory_path)
|
86 |
+
wav_files = [os.path.join(directory_path, file) for file in files_in_directory if file.endswith('.wav')]
|
87 |
+
wav_files.sort(key=lambda x: os.path.getmtime(os.path.join(directory_path, x)), reverse=True)
|
88 |
+
history_list = generation_history.split(',') if generation_history else []
|
89 |
+
updated_files = [file for file in wav_files if file not in history_list]
|
90 |
+
updated_history = updated_files + history_list
|
91 |
+
return ','.join(updated_history), gr.update(visible=True)
|
92 |
+
|
93 |
+
def increase_list_size(list_size):
|
94 |
+
return list_size+PAGE_SIZE
|
95 |
+
|
96 |
+
css = '''
|
97 |
+
#live_gen:before {
|
98 |
+
content: '';
|
99 |
+
animation: svelte-z7cif2-pulseStart 1s cubic-bezier(.4,0,.6,1), svelte-z7cif2-pulse 2s cubic-bezier(.4,0,.6,1) 1s infinite;
|
100 |
+
border: 2px solid var(--color-accent);
|
101 |
+
background: transparent;
|
102 |
+
z-index: var(--layer-1);
|
103 |
+
pointer-events: none;
|
104 |
+
position: absolute;
|
105 |
+
height: 100%;
|
106 |
+
width: 100%;
|
107 |
+
border-radius: 7px;
|
108 |
+
}
|
109 |
+
#live_gen_items{
|
110 |
+
max-height: 570px;
|
111 |
+
overflow-y: scroll;
|
112 |
+
}
|
113 |
+
'''
|
114 |
+
|
115 |
+
examples = [
|
116 |
+
[
|
117 |
+
"serene soundscape of a beach at sunset.", # Text prompt
|
118 |
+
"dpmpp-2m-sde", # Sampler type
|
119 |
+
45, # Duration in Seconds
|
120 |
+
100, # Number of Diffusion Steps
|
121 |
+
10, # CFG Scale
|
122 |
+
0.5, # Sigma min
|
123 |
+
800 # Sigma max
|
124 |
+
],
|
125 |
+
[
|
126 |
+
"clapping crowd", # Text prompt
|
127 |
+
"dpmpp-3m-sde", # Sampler type
|
128 |
+
30, # Duration in Seconds
|
129 |
+
100, # Number of Diffusion Steps
|
130 |
+
7, # CFG Scale
|
131 |
+
0.5, # Sigma min
|
132 |
+
500 # Sigma max
|
133 |
+
],
|
134 |
+
[
|
135 |
+
"forest ambiance birds chirping wind rustling.", # Text prompt
|
136 |
+
"k-dpm-fast", # Sampler type
|
137 |
+
60, # Duration in Seconds
|
138 |
+
140, # Number of Diffusion Steps
|
139 |
+
7.5, # CFG Scale
|
140 |
+
0.3, # Sigma min
|
141 |
+
700 # Sigma max
|
142 |
+
],
|
143 |
+
[
|
144 |
+
"gentle rainfall distant thunder.", # Text prompt
|
145 |
+
"dpmpp-3m-sde", # Sampler type
|
146 |
+
35, # Duration in Seconds
|
147 |
+
110, # Number of Diffusion Steps
|
148 |
+
8, # CFG Scale
|
149 |
+
0.1, # Sigma min
|
150 |
+
500 # Sigma max
|
151 |
+
],
|
152 |
+
[
|
153 |
+
"cafe environment soft edm techno music ambient chatter.", # Text prompt
|
154 |
+
"k-lms", # Sampler type
|
155 |
+
25, # Duration in Seconds
|
156 |
+
90, # Number of Diffusion Steps
|
157 |
+
6, # CFG Scale
|
158 |
+
0.4, # Sigma min
|
159 |
+
650 # Sigma max
|
160 |
+
],
|
161 |
+
["Rock beat drumming acoustic guitar.",
|
162 |
+
"dpmpp-2m-sde", # Sampler type
|
163 |
+
30, # Duration in Seconds
|
164 |
+
100, # Number of Diffusion Steps
|
165 |
+
7, # CFG Scale
|
166 |
+
0.3, # Sigma min
|
167 |
+
500 # Sigma max
|
168 |
+
]
|
169 |
+
]
|
170 |
+
|
171 |
+
with gr.Blocks(theme=theme, css=css) as demo:
|
172 |
+
gr.Markdown("# Stable Audio Multiplayer Live")
|
173 |
+
gr.Markdown("Generate audio with text, share and learn from others how to best prompt this new model")
|
174 |
+
generation_history = gr.Textbox(visible=False)
|
175 |
+
list_size = gr.Number(value=PAGE_SIZE, visible=False)
|
176 |
+
with gr.Row():
|
177 |
+
with gr.Column():
|
178 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
|
179 |
+
btn_run = gr.Button("Generate")
|
180 |
+
with gr.Accordion("Parameters", open=True):
|
181 |
+
with gr.Row():
|
182 |
+
duration = gr.Slider(0, 47, value=20, step=1, label="Duration in Seconds")
|
183 |
+
|
184 |
+
with gr.Accordion("Advanced parameters", open=False):
|
185 |
+
steps = gr.Slider(10, 150, value=80, step=10, label="Number of Diffusion Steps")
|
186 |
+
sampler_type = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms",
|
187 |
+
"k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"],
|
188 |
+
label="Sampler type", value="dpmpp-3m-sde")
|
189 |
+
with gr.Row():
|
190 |
+
cfg_scale = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
|
191 |
+
sigma_min = gr.Slider(0.0, 5.0, step=0.01, value=0.3, label="Sigma min")
|
192 |
+
sigma_max = gr.Slider(0.0, 1000.0, step=0.1, value=500, label="Sigma max")
|
193 |
+
with gr.Column() as output_list:
|
194 |
+
output = gr.Audio(type="filepath", label="Generated Audio")
|
195 |
+
with gr.Column(elem_id="live_gen") as community_list:
|
196 |
+
gr.Markdown("# Community generations")
|
197 |
+
with gr.Column(elem_id="live_gen_items"):
|
198 |
+
@gr.render(inputs=[generation_history, list_size])
|
199 |
+
def show_output_list(generation_history, list_size):
|
200 |
+
history_list = generation_history.split(',') if generation_history else []
|
201 |
+
history_list_latest = history_list[:list_size]
|
202 |
+
for generation in history_list_latest:
|
203 |
+
generation_prompt_file = generation.replace('.wav', '.txt')
|
204 |
+
with open(generation_prompt_file, 'r') as file:
|
205 |
+
generation_prompt = file.read()
|
206 |
+
with gr.Group():
|
207 |
+
gr.Markdown(value=f"### {generation_prompt}")
|
208 |
+
gr.Audio(value=generation)
|
209 |
+
|
210 |
+
|
211 |
+
load_more = gr.Button("Load more")
|
212 |
+
load_more.click(fn=increase_list_size, inputs=list_size, outputs=list_size)
|
213 |
+
|
214 |
+
gr.Examples(
|
215 |
+
fn=generate_audio,
|
216 |
+
examples=examples,
|
217 |
+
inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max],
|
218 |
+
outputs=output,
|
219 |
+
cache_examples="lazy"
|
220 |
+
)
|
221 |
+
gr.on(
|
222 |
+
triggers=[btn_run.click, prompt.submit],
|
223 |
+
fn=generate_audio,
|
224 |
+
inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max],
|
225 |
+
outputs=output
|
226 |
+
)
|
227 |
+
demo.load(fn=list_all_outputs, inputs=generation_history, outputs=[generation_history, community_list], every=2)
|
228 |
+
|
229 |
+
model, model_config = load_model()
|
230 |
+
|
231 |
+
demo.launch()
|