awacke1's picture
Update app.py
ddcd358 verified
import streamlit as st
import streamlit.components.v1 as components
import os
import json
import random
import base64
import glob
import math
import openai
import pytz
import re
import requests
import textract
import time
import zipfile
import dotenv
from gradio_client import Client
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from datetime import datetime
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from io import BytesIO
from openai import ChatCompletion
from PyPDF2 import PdfReader
from templates import bot_template, css, user_template
from xml.etree import ElementTree as ET
from PIL import Image
from urllib.parse import quote # Ensure this import is included
# 1. Configuration
Site_Name = 'Scholarly-Article-Document-Search-With-Memory'
title="🚀🌌ArXiv Article Document Search Memory"
helpURL='https://huggingface.co/awacke1'
bugURL='https://huggingface.co/spaces/awacke1'
icons='🔍🚀🌌📖'
st.set_page_config(
page_title=title,
page_icon=icons,
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': helpURL,
'Report a bug': bugURL,
'About': title
}
)
def load_file(file_name):
with open(file_name, "r", encoding='utf-8') as file:
#with open(file_name, "r") as file:
content = file.read()
return content
# HTML5 based Speech Synthesis (Text to Speech in Browser)
@st.cache_resource
def SpeechSynthesis(result):
documentHTML5='''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>🔊 Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 = documentHTML5 + result
documentHTML5 = documentHTML5 + '''
</textarea>
<br>
<button onclick="readAloud()">🔊 Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=300)
def parse_to_markdown(text):
return text
import re
def extract_urls(text):
try:
# Regular expression patterns to find the required fields
date_pattern = re.compile(r'### (\d{2} \w{3} \d{4})')
abs_link_pattern = re.compile(r'\[(.*?)\]\((https://arxiv\.org/abs/\d+\.\d+)\)')
pdf_link_pattern = re.compile(r'\[⬇️\]\((https://arxiv\.org/pdf/\d+\.\d+)\)')
title_pattern = re.compile(r'### \d{2} \w{3} \d{4} \| \[(.*?)\]')
# Find all occurrences of the required fields using the regular expression patterns
date_matches = date_pattern.findall(text)
abs_link_matches = abs_link_pattern.findall(text)
pdf_link_matches = pdf_link_pattern.findall(text)
title_matches = title_pattern.findall(text)
# Generate markdown string with the extracted fields
markdown_text = ""
for i in range(len(date_matches)):
date = date_matches[i]
title = title_matches[i]
abs_link = abs_link_matches[i][1]
pdf_link = pdf_link_matches[i]
markdown_text += f"**Date:** {date}\n\n"
markdown_text += f"**Title:** {title}\n\n"
markdown_text += f"**Abstract Link:** [{abs_link}]({abs_link})\n\n"
markdown_text += f"**PDF Link:** [{pdf_link}]({pdf_link})\n\n"
markdown_text += "---\n\n"
return markdown_text
except:
st.write('.')
return ''
def download_pdfs(urls):
local_files = []
for url in urls:
if url.endswith('.pdf'):
local_filename = url.split('/')[-1]
response = requests.get(url)
with open(local_filename, 'wb') as f:
f.write(response.content)
local_files.append(local_filename)
return local_files
def generate_html(local_files):
html = "<ul>"
for file in local_files:
link = f'<li><a href="{file}">{file}</a></li>'
html += link
html += "</ul>"
return html
#@st.cache_resource
def search_arxiv(query):
start_time = time.strftime("%Y-%m-%d %H:%M:%S")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
search_query = query
search_source = "Arxiv Search - Latest - (EXPERIMENTAL)"
llm_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
#st.markdown('### 🔎 ' + query)
# Search 1 - Retrieve the Papers
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response1 = client.predict(
query,
20,
"Semantic Search - up to 10 Mar 2024",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)
lastpart = ''
totalparts = ''
Question = '### 🔎 ' + query + '\r\n' # Format for markdown display with links
References = response1[0]
References2 = response1[1]
#st.markdown(results)
# URLs from the response
ReferenceLinks = extract_urls(References)
#st.markdown(urls)
#results = results + urls
RunSecondQuery = True
if RunSecondQuery:
# Search 2 - Retrieve the Summary with Papers Context and Original Query
response2 = client.predict(
query,
"mistralai/Mixtral-8x7B-Instruct-v0.1",
True,
api_name="/ask_llm"
)
#st.markdown(response2)
if len(response2) > 10:
Answer = response2
SpeechSynthesis(Answer)
# Restructure results to follow format of Question, Answer, References, ReferenceLinks
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + ReferenceLinks
st.markdown(results)
st.write('🔍Run of Multi-Agent System Paper Summary Spec is Complete')
end_time = time.strftime("%Y-%m-%d %H:%M:%S")
# Output
start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S"))
end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S"))
elapsed_seconds = end_timestamp - start_timestamp
st.write(f"Start time: {start_time}")
st.write(f"Finish time: {end_time}")
st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds")
#SpeechSynthesis(results)
filename = generate_filename(query, "md")
create_file(filename, query, results, should_save)
return results
def download_pdfs_and_generate_html(urls):
pdf_links = []
for url in urls:
if url.endswith('.pdf'):
pdf_filename = os.path.basename(url)
download_pdf(url, pdf_filename)
pdf_links.append(pdf_filename)
local_links_html = '<ul>'
for link in pdf_links:
local_links_html += f'<li><a href="{link}">{link}</a></li>'
local_links_html += '</ul>'
return local_links_html
def download_pdf(url, filename):
response = requests.get(url)
with open(filename, 'wb') as file:
file.write(response.content)
# Show ArXiv Scholary Articles! ----------------*************----▶️ Semantic and Episodic Memory System
def search_arxiv_old(query):
start_time = time.strftime("%Y-%m-%d %H:%M:%S")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
search_query = query
search_source = "Arxiv Search - Latest - (EXPERIMENTAL)" # "Semantic Search - up to 10 Mar 2024"
llm_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
st.markdown('### 🔎 ' + query)
# Search 1 - Retrieve the Papers
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response1 = client.predict(
query,
20,
"Semantic Search - up to 10 Mar 2024", # Literal['Semantic Search - up to 10 Mar 2024', 'Arxiv Search - Latest - (EXPERIMENTAL)'] in 'Search Source' Dropdown component
"mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
api_name="/update_with_rag_md"
)
lastpart=''
totalparts=''
results = response1[0] # Format for markdown display with links
results2 = response1[1] # format for subquery without links
st.markdown(results)
RunSecondQuery = False
if RunSecondQuery:
# Search 2 - Retieve the Summary with Papers Context and Original Query
response2 = client.predict(
query, # str in 'parameter_13' Textbox component
"mistralai/Mixtral-8x7B-Instruct-v0.1",
#"mistralai/Mistral-7B-Instruct-v0.2",
#"google/gemma-7b-it",
True, # bool in 'Stream output' Checkbox component
api_name="/ask_llm"
)
st.markdown(response2)
results = results + response2
st.write('🔍Run of Multi-Agent System Paper Summary Spec is Complete')
end_time = time.strftime("%Y-%m-%d %H:%M:%S")
start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S"))
end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S"))
elapsed_seconds = end_timestamp - start_timestamp
st.write(f"Start time: {start_time}")
st.write(f"Finish time: {end_time}")
st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds")
SpeechSynthesis(results) # Search History Reader / Writer IO Memory - Audio at Same time as Reading.
filename=generate_filename(query, "md")
create_file(filename, query, results, should_save)
return results
# Prompts for App, for App Product, and App Product Code
PromptPrefix = 'Create a specification with streamlit functions creating markdown outlines and tables rich with appropriate emojis for methodical step by step rules defining the concepts at play. Use story structure architect rules to plan, structure and write three dramatic situations to include in the rules and how to play by matching the theme for topic of '
PromptPrefix2 = 'Create a streamlit python user app with full code listing to create a UI implementing the using streamlit, gradio, huggingface to create user interface elements like emoji buttons, sliders, drop downs, and data interfaces like dataframes to show tables, session_statematching this ruleset and thematic story plot line: '
PromptPrefix3 = 'Create a HTML5 aframe and javascript app using appropriate libraries to create a word game simulation with advanced libraries like aframe to render 3d scenes creating moving entities that stay within a bounding box but show text and animation in 3d for inventory, components and story entities. Show full code listing. Add a list of new random entities say 3 of a few different types to any list appropriately and use emojis to make things easier and fun to read. Use appropriate emojis in labels. Create the UI to implement storytelling in the style of a dungeon master, with features using three emoji appropriate text plot twists and recurring interesting funny fascinating and complex almost poetic named characters with genius traits and file IO, randomness, ten point choice lists, math distribution tradeoffs, witty humorous dilemnas with emoji , rewards, variables, reusable functions with parameters, and data driven app with python libraries and streamlit components for Javascript and HTML5. Use appropriate emojis for labels to summarize and list parts, function, conditions for topic:'
roleplaying_glossary = {
"🤖 AI Concepts": {
"MoE (Mixture of Experts) 🧠": [
"What are Multi Agent Systems for Health",
"What is Mixture of Experts for Health",
"What are Semantic and Episodic Memory and what is Mirroring for Behavioral Health",
"What are Self Rewarding AI Systems for Health",
"How are AGI and AMI systems created using Multi Agent Systems and Mixture of Experts for Health"
],
"Multi Agent Systems (MAS) 🤝": [
"Distributed AI systems",
"Autonomous agents interacting",
"Cooperative and competitive behavior",
"Decentralized problem-solving",
"Applications in robotics, simulations, and more"
],
"Self Rewarding AI 🎁": [
"Intrinsic motivation for AI agents",
"Autonomous goal setting and achievement",
"Exploration and curiosity-driven learning",
"Potential for open-ended development",
"Research area in reinforcement learning"
],
"Semantic and Episodic Memory 📚": [
"Two types of long-term memory",
"Semantic: facts and general knowledge",
"Episodic: personal experiences and events",
"Crucial for AI systems to understand and reason",
"Research in knowledge representation and retrieval"
]
},
"🛠️ AI Tools & Platforms": {
"AutoGen 🔧": [
"Automated machine learning (AutoML) tool",
"Generates AI models based on requirements",
"Simplifies AI development process",
"Accessible to non-experts",
"Integration with various data sources"
],
"ChatDev 💬": [
"Platform for building chatbots and conversational AI",
"Drag-and-drop interface for designing chat flows",
"Pre-built templates and integrations",
"Supports multiple messaging platforms",
"Analytics and performance tracking"
],
"Omniverse 🌐": [
"Nvidia's 3D simulation and collaboration platform",
"Physically accurate virtual worlds",
"Supports AI training and testing",
"Used in industries like robotics, architecture, and gaming",
"Enables seamless collaboration and data exchange"
],
"Lumiere 🎥": [
"AI-powered video analytics platform",
"Extracts insights and metadata from video content",
"Facial recognition and object detection",
"Sentiment analysis and scene understanding",
"Applications in security, media, and marketing"
],
"SORA 🏗️": [
"Scalable Open Research Architecture",
"Framework for distributed AI research and development",
"Modular and extensible design",
"Facilitates collaboration and reproducibility",
"Supports various AI algorithms and models"
]
},
"🔬 Science Topics": {
"Physics 🔭": [
"Astrophysics: galaxies, cosmology, planets, high energy phenomena, instrumentation, solar/stellar",
"Condensed Matter: disordered systems, materials science, nano/mesoscale, quantum gases, soft matter, statistical mechanics, superconductivity",
"General Relativity and Quantum Cosmology",
"High Energy Physics: experiment, lattice, phenomenology, theory",
"Mathematical Physics",
"Nonlinear Sciences: adaptation, cellular automata, chaos, solvable systems, pattern formation",
"Nuclear: experiment, theory",
"Physics: accelerators, atmospherics, atomic/molecular, biophysics, chemical, computational, education, fluids, geophysics, optics, plasma, popular, space"
],
"Mathematics ➗": [
"Algebra: geometry, topology, number theory, combinatorics, representation theory",
"Analysis: PDEs, functional, numerical, spectral theory, ODEs, complex variables",
"Geometry: algebraic, differential, metric, symplectic, topological",
"Probability and Statistics",
"Applied Math: information theory, optimization and control"
],
"Computer Science 💻": [
"Artificial Intelligence and Machine Learning",
"Computation and Language, Complexity, Engineering, Finance, Science",
"Computer Vision, Graphics, Robotics",
"Cryptography, Security, Blockchain",
"Data Structures, Algorithms, Databases",
"Distributed and Parallel Computing",
"Formal Languages, Automata, Logic",
"Information Theory, Signal Processing",
"Networks, Internet Architecture, Social Networks",
"Programming Languages, Software Engineering"
],
"Quantitative Biology 🧬": [
"Biomolecules, Cell Behavior, Genomics",
"Molecular Networks, Neurons and Cognition",
"Populations, Evolution, Ecology",
"Quantitative Methods, Subcellular Processes",
"Tissues, Organs, Organisms"
],
"Quantitative Finance 📈": [
"Computational and Mathematical Finance",
"Econometrics and Statistical Finance",
"Economics, Portfolio Management, Trading",
"Pricing, Risk Management"
],
"Electrical Engineering 🔌": [
"Audio, Speech, Image and Video Processing",
"Communications and Information Theory",
"Signal Processing, Controls, Robotics",
"Electronic Circuits, Embedded Systems"
]
}
}
# This displays per video and per image.
@st.cache_resource
def display_glossary_entity(k):
search_urls = {
"🚀🌌ArXiv": lambda k: f"/?q={quote(k)}", # this url plus query!
"🃏Analyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}", # this url plus query!
"📚PyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}", # this url plus query!
"🔬JSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}", # this url plus query!
"📖Wiki": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"🔍Google": lambda k: f"https://www.google.com/search?q={quote(k)}",
"🔎Bing": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"🎥YouTube": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"🐦Twitter": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
#st.markdown(f"{k} {links_md}", unsafe_allow_html=True)
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)
# Function to display the entire glossary in a grid format with links
@st.cache_resource
def display_glossary_grid(roleplaying_glossary):
search_urls = {
"🚀🌌ArXiv": lambda k: f"/?q={quote(k)}", # this url plus query!
"🃏Analyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}", # this url plus query!
"📚PyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}", # this url plus query!
"🔬JSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}", # this url plus query!
"📖Wiki": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"🔍Google": lambda k: f"https://www.google.com/search?q={quote(k)}",
"▶️YouTube": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"🔎Bing": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"🎥YouTube": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"🐦Twitter": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
for category, details in roleplaying_glossary.items():
st.write(f"### {category}")
cols = st.columns(len(details)) # Create dynamic columns based on the number of games
#cols = st.columns(num_columns_text) # Create dynamic columns based on the number of games
for idx, (game, terms) in enumerate(details.items()):
with cols[idx]:
st.markdown(f"#### {game}")
for term in terms:
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
st.markdown(f"**{term}** <small>{links_md}</small>", unsafe_allow_html=True)
@st.cache_resource
def get_table_download_link(file_path):
try:
#with open(file_path, 'r') as file:
#with open(file_path, 'r', encoding="unicode", errors="surrogateescape") as file:
with open(file_path, 'r', encoding='utf-8') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.py':
mime_type = 'text/plain'
elif ext == '.xlsx':
mime_type = 'text/plain'
elif ext == '.csv':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
elif ext == '.wav':
mime_type = 'audio/wav'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
except:
return ''
@st.cache_resource
def create_zip_of_files(files): # ----------------------------------
zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
@st.cache_resource
def get_zip_download_link(zip_file):
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
return href # ----------------------------------
def get_file():
st.write(st.session_state['file'])
def SaveFileTextClicked():
fileText = st.session_state.file_content_area
fileName = st.session_state.file_name_input
with open(fileName, 'w', encoding='utf-8') as file:
file.write(fileText)
st.markdown('Saved ' + fileName + '.')
def SaveFileNameClicked():
newFileName = st.session_state.file_name_input
oldFileName = st.session_state.filename
if (newFileName!=oldFileName):
os.rename(oldFileName, newFileName)
st.markdown('Renamed file ' + oldFileName + ' to ' + newFileName + '.')
newFileText = st.session_state.file_content_area
oldFileText = st.session_state.filetext
# Function to compare file sizes and delete duplicates
def compare_and_delete_files(files):
if not files:
st.warning("No files to compare.")
return
# Dictionary to store file sizes and their paths
file_sizes = {}
for file in files:
size = os.path.getsize(file)
if size in file_sizes:
file_sizes[size].append(file)
else:
file_sizes[size] = [file]
# Remove all but the latest file for each size group
for size, paths in file_sizes.items():
if len(paths) > 1:
latest_file = max(paths, key=os.path.getmtime)
for file in paths:
if file != latest_file:
os.remove(file)
st.success(f"Deleted {file} as a duplicate.")
st.rerun()
# Function to get file size
def get_file_size(file_path):
return os.path.getsize(file_path)
def FileSidebar():
# File Sidebar for files 🌐View, 📂Open, ▶️Run, and 🗑Delete per file
all_files = glob.glob("*.md")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by filename length which puts similar prompts together - consider making date and time of file optional.
# Button to compare files and delete duplicates
#if st.button("Compare and Delete Duplicates"):
# compare_and_delete_files(all_files)
# ⬇️ Download
Files1, Files2 = st.sidebar.columns(2)
with Files1:
if st.button("🗑 Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
with Files2:
if st.button("⬇️ Download"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
file_contents=''
file_name=''
next_action=''
# Add files 🌐View, 📂Open, ▶️Run, and 🗑Delete per file
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
with col1:
if st.button("🌐", key="md_"+file): # md emoji button
file_contents = load_file(file)
file_name=file
next_action='md'
st.session_state['next_action'] = next_action
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("📂", key="open_"+file): # open emoji button
file_contents = load_file(file)
file_name=file
next_action='open'
st.session_state['lastfilename'] = file
st.session_state['filename'] = file
st.session_state['filetext'] = file_contents
st.session_state['next_action'] = next_action
with col4:
if st.button("▶️", key="read_"+file): # search emoji button
file_contents = load_file(file)
file_name=file
next_action='search'
st.session_state['next_action'] = next_action
with col5:
if st.button("🗑", key="delete_"+file):
os.remove(file)
file_name=file
st.rerun()
next_action='delete'
st.session_state['next_action'] = next_action
# 🚩File duplicate detector - useful to prune and view all. Pruning works well by file size detection of two similar and flags the duplicate.
file_sizes = [get_file_size(file) for file in all_files]
previous_size = None
st.sidebar.title("File Operations")
for file, size in zip(all_files, file_sizes):
duplicate_flag = "🚩" if size == previous_size else ""
with st.sidebar.expander(f"File: {file} {duplicate_flag}"):
st.text(f"Size: {size} bytes")
if st.button("View", key=f"view_{file}"):
try:
with open(file, "r", encoding='utf-8') as f: # Ensure the file is read with UTF-8 encoding
file_content = f.read()
st.code(file_content, language="markdown")
except UnicodeDecodeError:
st.error("Failed to decode the file with UTF-8. It might contain non-UTF-8 encoded characters.")
if st.button("Delete", key=f"delete3_{file}"):
os.remove(file)
st.rerun()
previous_size = size # Update previous size for the next iteration
if len(file_contents) > 0:
if next_action=='open': # For "open", prep session state if it hasn't been yet
if 'lastfilename' not in st.session_state:
st.session_state['lastfilename'] = ''
if 'filename' not in st.session_state:
st.session_state['filename'] = ''
if 'filetext' not in st.session_state:
st.session_state['filetext'] = ''
open1, open2 = st.columns(spec=[.8,.2])
with open1:
# Use onchange functions to autoexecute file name and text save functions.
file_name_input = st.text_input(key='file_name_input', on_change=SaveFileNameClicked, label="File Name:",value=file_name )
file_content_area = st.text_area(key='file_content_area', on_change=SaveFileTextClicked, label="File Contents:", value=file_contents, height=300)
ShowButtons = False # Having buttons is redundant. They work but if on change event seals the deal so be it - faster save is less impedence - less context breaking
if ShowButtons:
bp1,bp2 = st.columns([.5,.5])
with bp1:
if st.button(label='💾 Save Name'):
SaveFileNameClicked()
with bp2:
if st.button(label='💾 Save File'):
SaveFileTextClicked()
new_file_content_area = st.session_state['file_content_area']
if new_file_content_area != file_contents:
st.markdown(new_file_content_area) #changed
if st.button("🔍 Run AI Meta Strategy", key="filecontentssearch"):
#search_glossary(file_content_area)
filesearch = PromptPrefix + file_content_area
st.markdown(filesearch)
if st.button(key=rerun, label='🔍AI Search' ):
search_glossary(filesearch)
if next_action=='md':
st.markdown(file_contents)
buttonlabel = '🔍Run'
if st.button(key='Runmd', label = buttonlabel):
user_prompt = file_contents
#try:
search_glossary(file_contents)
#except:
#st.markdown('GPT is sleeping. Restart ETA 30 seconds.')
if next_action=='search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
user_prompt = file_contents
#try:
#search_glossary(file_contents)
filesearch = PromptPrefix2 + file_content_area
st.markdown(filesearch)
if st.button(key=rerun, label='🔍Re-Code' ):
search_glossary(filesearch)
#except:
#st.markdown('GPT is sleeping. Restart ETA 30 seconds.')
# ----------------------------------------------------- File Sidebar for Jump Gates ------------------------------------------
# Randomly select a title
titles = [
"🎺🎷 The Sounds 🎹🥁 of the Big Easy 🎭🎉",
"🎼🎸 NOLA's Iconic 🎤🪕 Musical 🔊 Heritage 🏰",
"🎺🪘 Crescent City 🌙 Rhythms & Grooves 🎹💃",
"🎷🎸 Mardi Gras 🎭 Melodies",
"🎼🎺 Straight Outta Nawlins ⚜️",
"🥁🎻 Jazzy 🎷 Jambalaya 🍛 of New Orleans",
"🏰 Musical 🎹 Soul 🙌",
"🥁🎻 The Music Of New Orleans MoE 🎭🎉"
]
selected_title = random.choice(titles)
st.markdown(f"**{selected_title}**")
FileSidebar()
# ---- Art Card Sidebar with Random Selection of image:
def get_image_as_base64(url):
response = requests.get(url)
if response.status_code == 200:
# Convert the image to base64
return base64.b64encode(response.content).decode("utf-8")
else:
return None
def create_download_link(filename, base64_str):
href = f'<a href="data:file/png;base64,{base64_str}" download="{filename}">Download Image</a>'
return href
@st.cache_resource
def SideBarImageShuffle():
image_urls = [
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/cfhJIasuxLkT5fnaAE6Gj.png",
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/UMo4oWNrrd6RLLzsFxQAi.png",
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/o_EH4cTs5Qxiu7xTZw9I3.png",
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/cmCZ5RTdSx3usMm7MwwWK.png",
]
selected_image_url = random.choice(image_urls)
selected_image_base64 = get_image_as_base64(selected_image_url)
if selected_image_base64 is not None:
with st.sidebar:
st.markdown(f"![image](data:image/png;base64,{selected_image_base64})")
else:
st.sidebar.write("Failed to load the image.")
ShowSideImages=False
if ShowSideImages:
SideBarImageShuffle()
# Ensure the directory for storing scores exists
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)
# Function to generate a unique key for each button, including an emoji
def generate_key(label, header, idx):
return f"{header}_{label}_{idx}_key"
# Function to increment and save score
def update_score(key, increment=1):
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
else:
score_data = {"clicks": 0, "score": 0}
score_data["clicks"] += 1
score_data["score"] += increment
with open(score_file, "w") as file:
json.dump(score_data, file)
return score_data["score"]
# Function to load score
def load_score(key):
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
return score_data["score"]
return 0
# 🔍Run--------------------------------------------------------
@st.cache_resource
def search_glossary(query):
#for category, terms in roleplaying_glossary.items():
# if query.lower() in (term.lower() for term in terms):
# st.markdown(f"#### {category}")
# st.write(f"- {query}")
all=""
st.markdown(f"- {query}")
# 🔍Run 1 - plain query
#response = chat_with_model(query)
#response1 = chat_with_model45(query)
#all = query + ' ' + response1
#st.write('🔍Run 1 is Complete.')
# ArXiv searcher ~-<>-~ Paper Summary - Ask LLM
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response2 = client.predict(
query, # str in 'parameter_13' Textbox component
"mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
True, # bool in 'Stream output' Checkbox component
api_name="/ask_llm"
)
st.write('🔍Run of Multi-Agent System Paper Summary Spec is Complete')
st.markdown(response2)
# ArXiv searcher ~-<>-~ Paper References - Update with RAG
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response1 = client.predict(
query,
10,
"Semantic Search - up to 10 Mar 2024", # Literal['Semantic Search - up to 10 Mar 2024', 'Arxiv Search - Latest - (EXPERIMENTAL)'] in 'Search Source' Dropdown component
"mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
api_name="/update_with_rag_md"
)
st.write('🔍Run of Multi-Agent System Paper References is Complete')
#st.markdown(response1)
responseall = response2 + response1[0] + response1[1]
st.markdown(responseall)
return responseall
# GPT 35 turbo and GPT 45 - - - - - - - - - - - - -<><><><><>:
RunPostArxivLLM = False
if RunPostArxivLLM:
# 🔍Run PaperSummarizer
PaperSummarizer = ' Create a paper summary as a markdown table with paper links clustering the features writing short markdown emoji outlines to extract three main ideas from each of the ten summaries. For each one create three simple points led by an emoji of the main three steps needed as method step process for implementing the idea as a single app.py streamlit python app. '
response2 = chat_with_model(PaperSummarizer + str(response1))
st.write('🔍Run 3 - Paper Summarizer is Complete.')
# 🔍Run AppSpecifier
AppSpecifier = ' Design and write a streamlit python code listing and specification that implements each scientific method steps as ten functions keeping specification in a markdown table in the function comments with original paper link to outline the AI pipeline ensemble implementing code as full plan to build.'
response3 = chat_with_model(AppSpecifier + str(response2))
st.write('🔍Run 4 - AppSpecifier is Complete.')
# 🔍Run PythonAppCoder
PythonAppCoder = ' Complete this streamlit python app implementing the functions in detail using appropriate python libraries and streamlit user interface elements. Show full code listing for the completed detail app as full code listing with no comments or commentary. '
#result = str(result).replace('\n', ' ').replace('|', ' ')
# response4 = chat_with_model45(PythonAppCoder + str(response3))
response4 = chat_with_model(PythonAppCoder + str(response3))
st.write('🔍Run Python AppCoder is Complete.')
# experimental 45 - - - - - - - - - - - - -<><><><><>
responseAll = '# Query: ' + query + '# Summary: ' + str(response2) + '# Streamlit App Specifier: ' + str(response3) + '# Complete Streamlit App: ' + str(response4) + '# Scholarly Article Links References: ' + str(response1)
filename = generate_filename(responseAll, "md")
create_file(filename, query, responseAll, should_save)
return responseAll # 🔍Run--------------------------------------------------------
else:
return response1
# Function to display the glossary in a structured format
def display_glossary(glossary, area):
if area in glossary:
st.subheader(f"📘 Glossary for {area}")
for game, terms in glossary[area].items():
st.markdown(f"### {game}")
for idx, term in enumerate(terms, start=1):
st.write(f"{idx}. {term}")
#@st.cache_resource
def display_videos_and_links(num_columns):
video_files = [f for f in os.listdir('.') if f.endswith('.mp4')]
if not video_files:
st.write("No MP4 videos found in the current directory.")
return
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns) # Define num_columns columns outside the loop
col_index = 0 # Initialize column index
for video_file in video_files_sorted:
with cols[col_index % num_columns]: # Use modulo 2 to alternate between the first and second column
# Embedding video with autoplay and loop using HTML
#video_html = ("""<video width="100%" loop autoplay> <source src="{video_file}" type="video/mp4">Your browser does not support the video tag.</video>""")
#st.markdown(video_html, unsafe_allow_html=True)
k = video_file.split('.')[0] # Assumes keyword is the file name without extension
st.video(video_file, format='video/mp4', start_time=0)
display_glossary_entity(k)
col_index += 1 # Increment column index to place the next video in the next column
@st.cache_resource
def display_images_and_wikipedia_summaries(num_columns=4):
image_files = [f for f in os.listdir('.') if f.endswith('.png')]
if not image_files:
st.write("No PNG images found in the current directory.")
return
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns) # Use specified num_columns for layout
col_index = 0 # Initialize column index for cycling through columns
for image_file in image_files_sorted:
with cols[col_index % num_columns]: # Cycle through columns based on num_columns
image = Image.open(image_file)
st.image(image, caption=image_file, use_column_width=True)
k = image_file.split('.')[0] # Assumes keyword is the file name without extension
display_glossary_entity(k)
col_index += 1 # Increment to move to the next column in the next iteration
def get_all_query_params(key):
return st.query_params().get(key, [])
def clear_query_params():
st.query_params()
# Function to display content or image based on a query
#@st.cache_resource
def display_content_or_image(query):
for category, terms in transhuman_glossary.items():
for term in terms:
if query.lower() in term.lower():
st.subheader(f"Found in {category}:")
st.write(term)
return True # Return after finding and displaying the first match
image_dir = "images" # Example directory where images are stored
image_path = f"{image_dir}/{query}.png" # Construct image path with query
if os.path.exists(image_path):
st.image(image_path, caption=f"Image for {query}")
return True
st.warning("No matching content or image found.")
return False
game_emojis = {
"Dungeons and Dragons": "🐉",
"Call of Cthulhu": "🐙",
"GURPS": "🎲",
"Pathfinder": "🗺️",
"Kindred of the East": "🌅",
"Changeling": "🍃",
}
topic_emojis = {
"Core Rulebooks": "📚",
"Maps & Settings": "🗺️",
"Game Mechanics & Tools": "⚙️",
"Monsters & Adversaries": "👹",
"Campaigns & Adventures": "📜",
"Creatives & Assets": "🎨",
"Game Master Resources": "🛠️",
"Lore & Background": "📖",
"Character Development": "🧍",
"Homebrew Content": "🔧",
"General Topics": "🌍",
}
# Adjusted display_buttons_with_scores function
def display_buttons_with_scores(num_columns_text):
for category, games in roleplaying_glossary.items():
category_emoji = topic_emojis.get(category, "🔍") # Default to search icon if no match
st.markdown(f"## {category_emoji} {category}")
for game, terms in games.items():
game_emoji = game_emojis.get(game, "🎮") # Default to generic game controller if no match
for term in terms:
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
score = load_score(key)
if st.button(f"{game_emoji} {category} {game} {term} {score}", key=key):
update_score(key)
# Create a dynamic query incorporating emojis and formatting for clarity
query_prefix = f"{category_emoji} {game_emoji} ** {category} - {game} - {term} - **"
# ----------------------------------------------------------------------------------------------
#query_body = f"Create a detailed outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
query_body = f"Create a streamlit python app.py that produces a detailed markdown outline and emoji laden user interface with labels with the entity name and emojis in all labels with a set of streamlit UI components with drop down lists and dataframes and buttons with expander and sidebar for the app to run the data as default values mostly in text boxes. Feature a 3 point outline sith 3 subpoints each where each line has about six words describing this and also contain appropriate emoji for creating sumamry of all aspeccts of this topic. an outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
response = search_glossary(query_prefix + query_body)
def get_all_query_params(key):
return st.query_params().get(key, [])
def clear_query_params():
st.query_params()
# My Inference API Copy
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
# Meta's Original - Chat HF Free Version:
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
API_KEY = os.getenv('API_KEY')
MODEL1="meta-llama/Llama-2-7b-chat-hf"
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
HF_KEY = os.getenv('HF_KEY')
headers = {
"Authorization": f"Bearer {HF_KEY}",
"Content-Type": "application/json"
}
key = os.getenv('OPENAI_API_KEY')
prompt = "...."
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
# 3. Stream Llama Response
@st.cache_resource
def StreamLLMChatResponse(prompt):
try:
endpoint_url = API_URL
hf_token = API_KEY
st.write('Running client ' + endpoint_url)
client = InferenceClient(endpoint_url, token=hf_token)
gen_kwargs = dict(
max_new_tokens=512,
top_k=30,
top_p=0.9,
temperature=0.2,
repetition_penalty=1.02,
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
)
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
report=[]
res_box = st.empty()
collected_chunks=[]
collected_messages=[]
allresults=''
for r in stream:
if r.token.special:
continue
if r.token.text in gen_kwargs["stop_sequences"]:
break
collected_chunks.append(r.token.text)
chunk_message = r.token.text
collected_messages.append(chunk_message)
try:
report.append(r.token.text)
if len(r.token.text) > 0:
result="".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write('Stream llm issue')
SpeechSynthesis(result)
return result
except:
st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
# 4. Run query with payload
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
st.markdown(response.json())
return response.json()
def get_output(prompt):
return query({"inputs": prompt})
# 5. Auto name generated output files from time and content
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255] # 255 is linux max, 260 is windows max
#safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 6. Speech transcription via OpenAI service
def transcribe_audio(openai_key, file_path, model):
openai.api_key = openai_key
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
headers = {
"Authorization": f"Bearer {openai_key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
st.write('STT transcript ' + OPENAI_API_URL)
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write(response.json())
chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
transcript = response.json().get('text')
filename = generate_filename(transcript, 'txt')
response = chatResponse
user_prompt = transcript
create_file(filename, user_prompt, response, should_save)
return transcript
else:
st.write(response.json())
st.error("Error in API call.")
return None
# 7. Auto stop on silence audio control for recording WAV files
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder(key='audio_recorder')
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
# 8. File creator that interprets type and creates output file for text, markdown and code
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
base_filename, ext = os.path.splitext(filename)
if ext in ['.txt', '.htm', '.md']:
# ****** line 344 is read utf-8 encoding was needed when running locally to save utf-8 encoding and not fail on write
#with open(f"{base_filename}.md", 'w') as file:
#with open(f"{base_filename}.md", 'w', encoding="ascii", errors="surrogateescape") as file:
with open(f"{base_filename}.md", 'w', encoding='utf-8') as file:
#try:
#content = (prompt.strip() + '\r\n' + decode(response, ))
file.write(response)
#except:
# st.write('.')
# ****** utf-8 encoding was needed when running locally to save utf-8 encoding and not fail on write
#has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)
#has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response))
#if has_python_code:
# python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
# with open(f"{base_filename}-Code.py", 'w') as file:
# file.write(python_code)
# with open(f"{base_filename}.md", 'w') as file:
# content = prompt.strip() + '\r\n' + response
# file.write(content)
def truncate_document(document, length):
return document[:length]
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")
# 10. Read in and provide UI for past files
@st.cache_resource
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
# 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS
@st.cache_resource
def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'): # gpt-4-0125-preview gpt-3.5-turbo
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a coder, inventor, and writer of quotes on wisdom as a helpful expert in all fields of health, math, development and AI using python.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(document_section)>0:
conversation.append({'role': 'assistant', 'content': document_section})
start_time = time.time()
report = []
res_box = st.empty()
collected_chunks = []
collected_messages = []
for chunk in openai.ChatCompletion.create(model=model_choice, messages=conversation, temperature=0.5, stream=True):
collected_chunks.append(chunk)
chunk_message = chunk['choices'][0]['delta']
collected_messages.append(chunk_message)
content=chunk["choices"][0].get("delta",{}).get("content")
try:
report.append(content)
if len(content) > 0:
result = "".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write(' ')
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
st.write("Elapsed time:")
st.write(time.time() - start_time)
return full_reply_content
# 11.1 45
@st.cache_resource
def chat_with_model45(prompt, document_section='', model_choice='gpt-4-0125-preview'): # gpt-4-0125-preview gpt-3.5-turbo
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a coder, inventor, and writer of quotes on wisdom as a helpful expert in all fields of health, math, development and AI using python.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(document_section)>0:
conversation.append({'role': 'assistant', 'content': document_section})
start_time = time.time()
report = []
res_box = st.empty()
collected_chunks = []
collected_messages = []
for chunk in openai.ChatCompletion.create(model=model_choice, messages=conversation, temperature=0.5, stream=True):
collected_chunks.append(chunk)
chunk_message = chunk['choices'][0]['delta']
collected_messages.append(chunk_message)
content=chunk["choices"][0].get("delta",{}).get("content")
try:
report.append(content)
if len(content) > 0:
result = "".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write(' ')
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
st.write("Elapsed time:")
st.write(time.time() - start_time)
return full_reply_content
@st.cache_resource
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'): # gpt-4-0125-preview gpt-3.5-turbo
#def chat_with_file_contents(prompt, file_content, model_choice='gpt-4-0125-preview'): # gpt-4-0125-preview gpt-3.5-turbo
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(file_content)>0:
conversation.append({'role': 'assistant', 'content': file_content})
response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
return response['choices'][0]['message']['content']
def extract_mime_type(file):
if isinstance(file, str):
pattern = r"type='(.*?)'"
match = re.search(pattern, file)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract MIME type from {file}")
elif isinstance(file, streamlit.UploadedFile):
return file.type
else:
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
def extract_file_extension(file):
# get the file name directly from the UploadedFile object
file_name = file.name
pattern = r".*?\.(.*?)$"
match = re.search(pattern, file_name)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract file extension from {file_name}")
# Normalize input as text from PDF and other formats
@st.cache_resource
def pdf2txt(docs):
text = ""
for file in docs:
file_extension = extract_file_extension(file)
st.write(f"File type extension: {file_extension}")
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
text += file.getvalue().decode('utf-8')
elif file_extension.lower() == 'pdf':
from PyPDF2 import PdfReader
pdf = PdfReader(BytesIO(file.getvalue()))
for page in range(len(pdf.pages)):
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
return text
def txt2chunks(text):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
return text_splitter.split_text(text)
# Vector Store using FAISS
@st.cache_resource
def vector_store(text_chunks):
embeddings = OpenAIEmbeddings(openai_api_key=key)
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# Memory and Retrieval chains
@st.cache_resource
def get_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
def process_user_input(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
template = user_template if i % 2 == 0 else bot_template
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
filename = generate_filename(user_question, 'txt')
response = message.content
user_prompt = user_question
create_file(filename, user_prompt, response, should_save)
def divide_prompt(prompt, max_length):
words = prompt.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if len(word) + current_length <= max_length:
current_length += len(word) + 1
current_chunk.append(word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
chunks.append(' '.join(current_chunk))
return chunks
API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
MODEL2 = "openai/whisper-small.en"
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
HF_KEY = st.secrets['HF_KEY']
headers = {
"Authorization": f"Bearer {HF_KEY}",
"Content-Type": "audio/wav"
}
def query(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL_IE, headers=headers, data=data)
return response.json()
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 15. Audio recorder to Wav file
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
# 16. Speech transcription to file output
def transcribe_audio(filename):
output = query(filename)
return output
# Sample function to demonstrate a response, replace with your own logic
def StreamMedChatResponse(topic):
st.write(f"Showing resources or questions related to: {topic}")
# Function to encode file to base64
def get_base64_encoded_file(file_path):
with open(file_path, "rb") as file:
return base64.b64encode(file.read()).decode()
# Function to create a download link
def get_audio_download_link(file_path):
base64_file = get_base64_encoded_file(file_path)
return f'<a href="data:file/wav;base64,{base64_file}" download="{os.path.basename(file_path)}">⬇️ Download Audio</a>'
# 🎵 Wav Audio files - Transcription History in Wav
all_files = glob.glob("*.wav")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
filekey = 'delall'
if st.sidebar.button("🗑 Delete All Audio", key=filekey):
for file in all_files:
os.remove(file)
st.rerun()
for file in all_files:
col1, col2 = st.sidebar.columns([6, 1]) # adjust the ratio as needed
with col1:
st.markdown(file)
if st.button("🎵", key="play_" + file): # play emoji button
audio_file = open(file, 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes, format='audio/wav')
#st.markdown(get_audio_download_link(file), unsafe_allow_html=True)
#st.text_input(label="", value=file)
with col2:
if st.button("🗑", key="delete_" + file):
os.remove(file)
st.rerun()
GiveFeedback=False
if GiveFeedback:
with st.expander("Give your feedback 👍", expanded=False):
feedback = st.radio("Step 8: Give your feedback", ("👍 Upvote", "👎 Downvote"))
if feedback == "👍 Upvote":
st.write("You upvoted 👍. Thank you for your feedback!")
else:
st.write("You downvoted 👎. Thank you for your feedback!")
load_dotenv()
st.write(css, unsafe_allow_html=True)
st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
process_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader("import documents", accept_multiple_files=True)
with st.spinner("Processing"):
raw = pdf2txt(docs)
if len(raw) > 0:
length = str(len(raw))
text_chunks = txt2chunks(raw)
vectorstore = vector_store(text_chunks)
st.session_state.conversation = get_chain(vectorstore)
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
filename = generate_filename(raw, 'txt')
create_file(filename, raw, '', should_save)
try:
query_params = st.query_params
query = (query_params.get('q') or query_params.get('query') or [''])
if len(query) > 1:
result = search_arxiv(query)
#result2 = search_glossary(result)
except:
st.markdown(' ')
if 'action' in st.query_params:
action = st.query_params()['action'][0] # Get the first (or only) 'action' parameter
if action == 'show_message':
st.success("Showing a message because 'action=show_message' was found in the URL.")
elif action == 'clear':
clear_query_params()
st.rerun()
if 'query' in st.query_params:
query = st.query_params['query'][0] # Get the query parameter
# Display content or image based on the query
display_content_or_image(query)
def transcribe_canary(filename):
from gradio_client import Client
client = Client("https://awacke1-speech-recognition-canary-nvidiat4.hf.space/")
result = client.predict(
filename, # filepath in 'parameter_5' Audio component
"English", # Literal['English', 'Spanish', 'French', 'German'] in 'Input audio is spoken in:' Dropdown component
"English", # Literal['English', 'Spanish', 'French', 'German'] in 'Transcribe in language:' Dropdown component
True, # bool in 'Punctuation & Capitalization in transcript?' Checkbox component
api_name="/transcribe"
)
st.write(result)
return result
filename = save_and_play_audio(audio_recorder)
if filename is not None:
transcript=''
transcript=transcribe_canary(filename)
result = search_arxiv(transcript)
#result2 = search_glossary(result)
#st.markdown(result)
#st.markdown
#transcription = transcribe_audio(filename)
#try:
# transcript = transcription['text']
# st.write(transcript)
#except:
# transcript=''
# st.write(transcript)
#st.write('Reasoning with your inputs..')
#response = chat_with_model(transcript)
#st.write('Response:')
#st.write(response)
#filename = generate_filename(response, "txt")
#create_file(filename, transcript, response, should_save)
# Whisper to Llama:
response = StreamLLMChatResponse(transcript)
filename_txt = generate_filename(transcript, "md")
create_file(filename_txt, transcript, response, should_save)
filename_wav = filename_txt.replace('.txt', '.wav')
import shutil
try:
if os.path.exists(filename):
shutil.copyfile(filename, filename_wav)
except:
st.write('.')
if os.path.exists(filename):
os.remove(filename)
prompt = '''
What is MoE?
What are Multi Agent Systems?
What is Self Rewarding AI?
What is Semantic and Episodic memory?
What is AutoGen?
What is ChatDev?
What is Omniverse?
What is Lumiere?
What is SORA?
'''
session_state = {}
if "search_queries" not in session_state:
session_state["search_queries"] = []
example_input = st.text_input("Search", value=session_state["search_queries"][-1] if session_state["search_queries"] else "")
if example_input:
session_state["search_queries"].append(example_input)
# Search AI
query=example_input
if query:
result = search_arxiv(query)
#search_glossary(query)
search_glossary(result)
st.markdown(' ')
#st.write("Search history:")
for example_input in session_state["search_queries"]:
st.write(example_input)
if st.button("Run Prompt", help="Click to run."):
try:
response=StreamLLMChatResponse(example_input)
create_file(filename, example_input, response, should_save)
except:
st.write('model is asleep. Starting now on A10 GPU. Please wait one minute then retry. KEDA triggered.')
openai.api_key = os.getenv('OPENAI_API_KEY')
if openai.api_key == None: openai.api_key = st.secrets['OPENAI_API_KEY']
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
#model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
#user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
AddAFileForContext=False
if AddAFileForContext:
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
with collength:
#max_length = st.slider(key='maxlength', label="File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
max_length = 128000
with colupload:
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
if st.button("👁️ View Upload"):
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Reasoning with your inputs...')
st.write('Response:')
st.write(response)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
num_columns_video=st.slider(key="num_columns_video", label="Choose Number of Video Columns", min_value=1, max_value=15, value=4)
display_videos_and_links(num_columns_video) # Video Jump Grid
num_columns_images=st.slider(key="num_columns_images", label="Choose Number of Image Columns", min_value=1, max_value=15, value=4)
display_images_and_wikipedia_summaries(num_columns_images) # Image Jump Grid
display_glossary_grid(roleplaying_glossary) # Word Glossary Jump Grid - Dynamically calculates columns based on details length to keep topic together
num_columns_text=st.slider(key="num_columns_text", label="Choose Number of Text Columns", min_value=1, max_value=15, value=4)
display_buttons_with_scores(num_columns_text) # Feedback Jump Grid