File size: 15,643 Bytes
bd9fae2
 
 
 
 
 
 
 
 
 
 
 
c5e4524
 
 
 
 
 
 
a7fc504
bd9fae2
c5e4524
 
 
 
 
 
 
 
 
bd9fae2
5ef1f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd9fae2
 
 
 
5ef1f60
 
bd9fae2
 
 
 
 
 
 
 
 
 
 
 
5ef1f60
 
bd9fae2
 
5ef1f60
bd9fae2
 
 
 
5ef1f60
bd9fae2
 
 
 
5ef1f60
bd9fae2
 
 
 
 
 
 
 
 
 
 
 
5ef1f60
bd9fae2
 
 
 
 
 
c5e4524
 
 
 
 
 
 
 
 
bd9fae2
c5e4524
bd9fae2
c5e4524
 
 
 
 
 
a7fc504
bd9fae2
c5e4524
 
 
 
 
 
 
1227998
c5e4524
 
 
 
bd9fae2
c5e4524
 
 
 
 
 
 
 
 
 
 
 
 
 
bd9fae2
c5e4524
 
 
 
 
 
bd9fae2
c5e4524
 
 
 
 
 
 
 
 
 
 
 
 
 
bd9fae2
c5e4524
 
 
 
 
 
 
bd9fae2
c5e4524
 
 
 
 
 
bd9fae2
c5e4524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a08523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
def get_bm25_search_hits(corpus, sparse_scores, top_n=50):
    bm25_search = []
    indices = []
    for idx in sparse_scores:
        if len(bm25_search) <= top_n:
            bm25_search.append(corpus[idx])
            indices.append(idx)
    indices = [int(x) for x in indices]
    return indices


def query_pinecone(
    dense_vec,
    top_k,
    index,
    year,
    quarter,
    ticker,
    participant_type,
    keywords=None,
    indices=None,
    threshold=0.25,
):
    if participant_type == "Company Speaker":
        participant = "Answer"
    else:
        participant = "Question"

    if year == "All":
        if quarter == "All":
            if indices != None:
                if keywords != None:
                    xc = index.query(
                        vector=dense_vec,
                        top_k=top_k,
                        filter={
                            "Year": {
                                "$in": [
                                    int("2020"),
                                    int("2019"),
                                    int("2018"),
                                    int("2017"),
                                    int("2016"),
                                ]
                            },
                            "Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
                            "Ticker": {"$eq": ticker},
                            "QA_Flag": {"$eq": participant},
                            "Keywords": {"$in": keywords},
                            "index": {"$in": indices},
                        },
                        include_metadata=True,
                    )
                else:
                    xc = index.query(
                        vector=dense_vec,
                        top_k=top_k,
                        filter={
                            "Year": {
                                "$in": [
                                    int("2020"),
                                    int("2019"),
                                    int("2018"),
                                    int("2017"),
                                    int("2016"),
                                ]
                            },
                            "Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
                            "Ticker": {"$eq": ticker},
                            "QA_Flag": {"$eq": participant},
                            "index": {"$in": indices},
                        },
                        include_metadata=True,
                    )
            else:
                if keywords != None:
                    xc = index.query(
                        vector=dense_vec,
                        top_k=top_k,
                        filter={
                            "Year": {
                                "$in": [
                                    int("2020"),
                                    int("2019"),
                                    int("2018"),
                                    int("2017"),
                                    int("2016"),
                                ]
                            },
                            "Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
                            "Ticker": {"$eq": ticker},
                            "QA_Flag": {"$eq": participant},
                            "Keywords": {"$in": keywords},
                        },
                        include_metadata=True,
                    )
                else:
                    xc = index.query(
                        vector=dense_vec,
                        top_k=top_k,
                        filter={
                            "Year": {
                                "$in": [
                                    int("2020"),
                                    int("2019"),
                                    int("2018"),
                                    int("2017"),
                                    int("2016"),
                                ]
                            },
                            "Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
                            "Ticker": {"$eq": ticker},
                            "QA_Flag": {"$eq": participant},
                        },
                        include_metadata=True,
                    )
        else:
            if indices != None:
                if keywords != None:
                    xc = index.query(
                        vector=dense_vec,
                        top_k=top_k,
                        filter={
                            "Year": {
                                "$in": [
                                    int("2020"),
                                    int("2019"),
                                    int("2018"),
                                    int("2017"),
                                    int("2016"),
                                ]
                            },
                            "Quarter": {"$eq": quarter},
                            "Ticker": {"$eq": ticker},
                            "QA_Flag": {"$eq": participant},
                            "Keywords": {"$in": keywords},
                            "index": {"$in": indices},
                        },
                        include_metadata=True,
                    )
                else:
                    xc = index.query(
                        vector=dense_vec,
                        top_k=top_k,
                        filter={
                            "Year": {
                                "$in": [
                                    int("2020"),
                                    int("2019"),
                                    int("2018"),
                                    int("2017"),
                                    int("2016"),
                                ]
                            },
                            "Quarter": {"$eq": quarter},
                            "Ticker": {"$eq": ticker},
                            "QA_Flag": {"$eq": participant},
                            "index": {"$in": indices},
                        },
                        include_metadata=True,
                    )
            else:
                if keywords != None:
                    xc = index.query(
                        vector=dense_vec,
                        top_k=top_k,
                        filter={
                            "Year": {
                                "$in": [
                                    int("2020"),
                                    int("2019"),
                                    int("2018"),
                                    int("2017"),
                                    int("2016"),
                                ]
                            },
                            "Quarter": {"$eq": quarter},
                            "Ticker": {"$eq": ticker},
                            "QA_Flag": {"$eq": participant},
                            "Keywords": {"$in": keywords},
                        },
                        include_metadata=True,
                    )
                else:
                    xc = index.query(
                        vector=dense_vec,
                        top_k=top_k,
                        filter={
                            "Year": {
                                "$in": [
                                    int("2020"),
                                    int("2019"),
                                    int("2018"),
                                    int("2017"),
                                    int("2016"),
                                ]
                            },
                            "Quarter": {"$eq": quarter},
                            "Ticker": {"$eq": ticker},
                            "QA_Flag": {"$eq": participant},
                        },
                        include_metadata=True,
                    )
    else:
        # search pinecone index for context passage with the answer
        if indices != None:
            if keywords != None:
                xc = index.query(
                    vector=dense_vec,
                    top_k=top_k,
                    filter={
                        "Year": int(year),
                        "Quarter": {"$eq": quarter},
                        "Ticker": {"$eq": ticker},
                        "QA_Flag": {"$eq": participant},
                        "Keywords": {"$in": keywords},
                        "index": {"$in": indices},
                    },
                    include_metadata=True,
                )
            else:
                xc = index.query(
                    vector=dense_vec,
                    top_k=top_k,
                    filter={
                        "Year": int(year),
                        "Quarter": {"$eq": quarter},
                        "Ticker": {"$eq": ticker},
                        "QA_Flag": {"$eq": participant},
                        "index": {"$in": indices},
                    },
                    include_metadata=True,
                )
        else:
            if keywords != None:
                xc = index.query(
                    vector=dense_vec,
                    top_k=top_k,
                    filter={
                        "Year": int(year),
                        "Quarter": {"$eq": quarter},
                        "Ticker": {"$eq": ticker},
                        "QA_Flag": {"$eq": participant},
                        "Keywords": {"$in": keywords},
                    },
                    include_metadata=True,
                )
            else:
                xc = index.query(
                    vector=dense_vec,
                    top_k=top_k,
                    filter={
                        "Year": int(year),
                        "Quarter": {"$eq": quarter},
                        "Ticker": {"$eq": ticker},
                        "QA_Flag": {"$eq": participant},
                    },
                    include_metadata=True,
                )
    # filter the context passages based on the score threshold
    filtered_matches = []
    for match in xc["matches"]:
        if match["score"] >= threshold:
            filtered_matches.append(match)
    xc["matches"] = filtered_matches
    return xc


def query_pinecone_sparse(
    dense_vec,
    sparse_vec,
    top_k,
    index,
    year,
    quarter,
    ticker,
    participant_type,
    keywords=None,
    indices=None,
    threshold=0.25,
):
    if participant_type == "Company Speaker":
        participant = "Answer"
    else:
        participant = "Question"


    if year == "All":
        if quarter == "All":
            xc = index.query(
                vector=dense_vec,
                sparse_vector=sparse_vec,
                top_k=top_k,
                filter={
                    "Year": {
                        "$in": [
                            int("2020"),
                            int("2019"),
                            int("2018"),
                            int("2017"),
                            int("2016"),
                        ]
                    },
                    "Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
                    "Ticker": {"$eq": ticker},
                    "QA_Flag": {"$eq": participant},
                    "Keywords": {"$in": keywords},
                },
                include_metadata=True,
            )
        else:
            xc = index.query(
                vector=dense_vec,
                sparse_vector=sparse_vec,
                top_k=top_k,
                filter={
                    "Year": {
                        "$in": [
                            int("2020"),
                            int("2019"),
                            int("2018"),
                            int("2017"),
                            int("2016"),
                        ]
                    },
                    "Quarter": {"$eq": quarter},
                    "Ticker": {"$eq": ticker},
                    "QA_Flag": {"$eq": participant},
                    "Keywords": {"$in": keywords},
                },
                include_metadata=True,
            )
    else:
        # search pinecone index for context passage with the answer
        xc = index.query(
            vector=dense_vec,
            sparse_vector=sparse_vec,
            top_k=top_k,
            filter={
                "Year": int(year),
                "Quarter": {"$eq": quarter},
                "Ticker": {"$eq": ticker},
                "QA_Flag": {"$eq": participant},
                "Keywords": {"$in": keywords},
            },
            include_metadata=True,
        )
    # filter the context passages based on the score threshold
    filtered_matches = []
    for match in xc["matches"]:
        if match["score"] >= threshold:
            filtered_matches.append(match)
    xc["matches"] = filtered_matches
    return xc


def format_query(query_results):
    # extract passage_text from Pinecone search result
    context = [
        result["metadata"]["Text"] for result in query_results["matches"]
    ]
    return context


def sentence_id_combine(data, query_results, lag=1):
    # Extract sentence IDs from query results
    ids = [
        result["metadata"]["Sentence_id"]
        for result in query_results["matches"]
    ]
    # Generate new IDs by adding a lag value to the original IDs
    new_ids = [id + i for id in ids for i in range(-lag, lag + 1)]
    # Remove duplicates and sort the new IDs
    new_ids = sorted(set(new_ids))
    # Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1
    lookup_ids = [
        new_ids[i : i + (lag * 2 + 1)]
        for i in range(0, len(new_ids), lag * 2 + 1)
    ]
    # Create a list of context sentences by joining the sentences
    #  corresponding to the lookup IDs
    context_list = [
        " ".join(
            data.loc[data["Sentence_id"].isin(lookup_id), "Text"].to_list()
        )
        for lookup_id in lookup_ids
    ]
    return context_list


def text_lookup(data, sentence_ids):
    context = ". ".join(data.iloc[sentence_ids].to_list())
    return context


def year_quarter_range(start_quarter, start_year, end_quarter, end_year):
    """Creates a list of all (year, quarter) pairs that lie in the range including the start and end quarters."""
    start_year = int(start_year)
    end_year = int(end_year)

    quarters = (
        [("Q1", "Q2", "Q3", "Q4")] * (end_year - start_year)
        + [("Q1", "Q2", "Q3" if end_quarter == "Q4" else "Q4")]
        * (end_quarter == "Q4")
        + [
            (
                "Q1"
                if start_quarter == "Q1"
                else "Q2"
                if start_quarter == "Q2"
                else "Q3"
                if start_quarter == "Q3"
                else "Q4",
            )
            * (end_year - start_year)
        ]
    )
    years = list(range(start_year, end_year + 1))
    list_year_quarter = [
        (y, q) for y in years for q in quarters[years.index(y)]
    ]
    # Remove duplicate pairs
    seen = set()
    list_year_quarter_cleaned = []
    for tup in list_year_quarter:
        if tup not in seen:
            seen.add(tup)
            list_year_quarter_cleaned.append(tup)
    return list_year_quarter_cleaned


def multi_document_query(
    dense_query_embedding,
    sparse_query_embedding,
    num_results,
    pinecone_index,
    start_quarter,
    start_year,
    end_quarter,
    end_year,
    ticker,
    participant_type,
    threshold,
):
    pass