varun500's picture
Update utils.py
3ea39d5
raw
history blame
6.86 kB
import streamlit as st
import pandas as pd
import pandas as pd
from tqdm import tqdm
import pinecone
import torch
from sentence_transformers import SentenceTransformer
from transformers import (
pipeline,
AutoTokenizer,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
)
import openai
import streamlit_scrollable_textbox as stx
@st.experimental_singleton
def get_data():
data = pd.read_csv("earnings_calls_cleaned_metadata.csv")
return data
# Initialize models from HuggingFace
@st.experimental_singleton
def get_t5_model():
return pipeline("summarization", model="t5-small", tokenizer="t5-small")
@st.experimental_singleton
def get_flan_t5_model():
return pipeline(
"summarization", model="google/flan-t5-small", tokenizer="google/flan-t5-small"
)
def get_gptj():
return pipeline(
"summarization", model="EleutherAI/gpt-j-6B", tokenizer="EleutherAI/gpt-j-6B"
)
@st.experimental_singleton
def get_mpnet_embedding_model():
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SentenceTransformer(
"sentence-transformers/all-mpnet-base-v2", device=device
)
model.max_seq_length = 512
return model
@st.experimental_singleton
def get_sgpt_embedding_model():
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SentenceTransformer(
"Muennighoff/SGPT-125M-weightedmean-nli-bitfit", device=device
)
model.max_seq_length = 512
return model
@st.experimental_memo
def save_key(api_key):
return api_key
def query_pinecone(
query, top_k, model, index, year, quarter, ticker, participant_type, threshold=0.25
):
if participant_type == "Company Speaker":
participant = "Answer"
else:
participant = "Question"
# generate embeddings for the query
xq = model.encode([query]).tolist()
if year == "All":
if quarter == "All":
xc = index.query(
xq,
top_k=top_k,
filter={
"Year": {
"$in": [
int("2020"),
int("2019"),
int("2018"),
int("2017"),
int("2016"),
]
},
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
"Ticker": {"$eq": ticker},
"QA_Flag": {"$eq": participant},
},
include_metadata=True,
)
else:
xc = index.query(
xq,
top_k=top_k,
filter={
"Year": {
"$in": [
int("2020"),
int("2019"),
int("2018"),
int("2017"),
int("2016"),
]
},
"Quarter": {"$eq": quarter},
"Ticker": {"$eq": ticker},
"QA_Flag": {"$eq": participant},
},
include_metadata=True,
)
else:
# search pinecone index for context passage with the answer
xc = index.query(
xq,
top_k=top_k,
filter={
"Year": int(year),
"Quarter": {"$eq": quarter},
"Ticker": {"$eq": ticker},
"QA_Flag": {"$eq": participant},
},
include_metadata=True,
)
# filter the context passages based on the score threshold
filtered_matches = []
for match in xc["matches"]:
if match["score"] >= threshold:
filtered_matches.append(match)
xc["matches"] = filtered_matches
return xc
def format_query(query_results):
# extract passage_text from Pinecone search result
context = [result["metadata"]["Text"] for result in query_results["matches"]]
return context
def sentence_id_combine(data, query_results, lag=1):
# Extract sentence IDs from query results
ids = [result["metadata"]["Sentence_id"] for result in query_results["matches"]]
# Generate new IDs by adding a lag value to the original IDs
new_ids = [id + i for id in ids for i in range(-lag, lag + 1)]
# Remove duplicates and sort the new IDs
new_ids = sorted(set(new_ids))
# Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1
lookup_ids = [
new_ids[i : i + (lag * 2 + 1)] for i in range(0, len(new_ids), lag * 2 + 1)
]
# Create a list of context sentences by joining the sentences corresponding to the lookup IDs
context_list = [
" ".join(data.Text.iloc[lookup_id].to_list()) for lookup_id in lookup_ids
]
return context_list
def text_lookup(data, sentence_ids):
context = ". ".join(data.iloc[sentence_ids].to_list())
return context
def generate_prompt(query_text, context_list):
context = " ".join(context_list)
prompt = f"""Answer the question in 6 long detailed points as accurately as possible using the provided context. Include as many key details as possible.
Context: {context}
Question: {query_text}
Answer:"""
return prompt
def generate_prompt_2(query_text, context_list):
context = " ".join(context_list)
prompt = f"""
Context information is below:
---------------------
{context}
---------------------
Given the context information and prior knowledge, answer this question:
{query_text}
Try to include as many key details as possible and format the answer in points."""
return prompt
def gpt_model(prompt):
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0.1,
max_tokens=1024,
top_p=1.0,
frequency_penalty=0.5,
presence_penalty=1,
)
return response.choices[0].text
# Transcript Retrieval
def retrieve_transcript(data, year, quarter, ticker):
if year == "All" or quarter == "All":
row = (
data.loc[
(data.Ticker == ticker),
["File_Name"],
]
.drop_duplicates()
.iloc[0, 0]
)
else:
row = (
data.loc[
(data.Year == int(year))
& (data.Quarter == quarter)
& (data.Ticker == ticker),
["File_Name"],
]
.drop_duplicates()
.iloc[0, 0]
)
# convert row to a string and join values with "-"
# row_str = "-".join(row.astype(str)) + ".txt"
open_file = open(
f"Transcripts/{ticker}/{row}",
"r",
)
file_text = open_file.read()
return file_text