awinml commited on
Commit
a64e1a1
1 Parent(s): f9da573

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +5 -22
  2. utils.py +7 -16
app.py CHANGED
@@ -8,6 +8,7 @@ from utils import (
8
  get_sgpt_embedding_model,
9
  get_flan_t5_model,
10
  get_t5_model,
 
11
  )
12
 
13
  from utils import (
@@ -16,8 +17,7 @@ from utils import (
16
  format_query,
17
  sentence_id_combine,
18
  text_lookup,
19
- gpt3_qa,
20
- gpt3_summary,
21
  )
22
 
23
 
@@ -62,7 +62,7 @@ encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice)
62
 
63
  # Choose decoder model
64
 
65
- decoder_models_choice = ["FLAN-T5", "T5", "GPT3 (QA_davinci)", "GPT3 (summary_davinci)"]
66
 
67
  decoder_model = st.selectbox("Select Decoder Model", decoder_models_choice)
68
 
@@ -120,25 +120,8 @@ if decoder_model == "GPT3 (summary_davinci)":
120
  )
121
  api_key = save_key(openai_key)
122
  openai.api_key = api_key
123
- output_text = []
124
- for context_text in context_list:
125
- output_text.append(gpt3_summary(context_text))
126
- generated_text = ". ".join(output_text)
127
- st.write(gpt3_summary(generated_text))
128
-
129
- elif decoder_model == "GPT3 (QA_davinci)":
130
- openai_key = st.text_input(
131
- "Enter OpenAI key",
132
- value=st.secrets["openai_key"],
133
- type="password",
134
- )
135
- api_key = save_key(openai_key)
136
- openai.api_key = api_key
137
- output_text = []
138
- for context_text in context_list:
139
- output_text.append(gpt3_qa(query_text, context_text))
140
- generated_text = ". ".join(output_text)
141
- st.write(gpt3_qa(query_text, generated_text))
142
 
143
  elif decoder_model == "T5":
144
  t5_pipeline = get_t5_model()
 
8
  get_sgpt_embedding_model,
9
  get_flan_t5_model,
10
  get_t5_model,
11
+ save_key,
12
  )
13
 
14
  from utils import (
 
17
  format_query,
18
  sentence_id_combine,
19
  text_lookup,
20
+ gpt3,
 
21
  )
22
 
23
 
 
62
 
63
  # Choose decoder model
64
 
65
+ decoder_models_choice = ["FLAN-T5", "T5", "GPT3 - (text-davinci-003)"]
66
 
67
  decoder_model = st.selectbox("Select Decoder Model", decoder_models_choice)
68
 
 
120
  )
121
  api_key = save_key(openai_key)
122
  openai.api_key = api_key
123
+ generated_text = gpt3(query_text, context_list)
124
+ st.write(gpt3(generated_text))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
  elif decoder_model == "T5":
127
  t5_pipeline = get_t5_model()
utils.py CHANGED
@@ -113,10 +113,15 @@ def text_lookup(data, sentence_ids):
113
  return context
114
 
115
 
116
- def gpt3_summary(text):
117
  response = openai.Completion.create(
118
  model="text-davinci-003",
119
- prompt=text + "\n\nTl;dr",
 
 
 
 
 
120
  temperature=0.1,
121
  max_tokens=512,
122
  top_p=1.0,
@@ -126,20 +131,6 @@ def gpt3_summary(text):
126
  return response.choices[0].text
127
 
128
 
129
- def gpt3_qa(query, answer):
130
- response = openai.Completion.create(
131
- model="text-davinci-003",
132
- prompt="Q: " + query + "\nA: " + answer,
133
- temperature=0,
134
- max_tokens=512,
135
- top_p=1,
136
- frequency_penalty=0.0,
137
- presence_penalty=0.0,
138
- stop=["\n"],
139
- )
140
- return response.choices[0].text
141
-
142
-
143
  # Transcript Retrieval
144
 
145
 
 
113
  return context
114
 
115
 
116
+ def gpt3(query, result):
117
  response = openai.Completion.create(
118
  model="text-davinci-003",
119
+ prompt=f"""Context information is below. \n"
120
+ "---------------------\n"
121
+ "{result}"
122
+ "\n---------------------\n"
123
+ "Given the context information and prior knowledge, answer this question: {query}. \n"
124
+ "Try to include as many key details as possible and format the answer in points. \n" """,
125
  temperature=0.1,
126
  max_tokens=512,
127
  top_p=1.0,
 
131
  return response.choices[0].text
132
 
133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  # Transcript Retrieval
135
 
136