Spaces:
Build error
Build error
Upload 191 files
Browse files- Transcripts/AMZN/2019-Apr-25-AMZN.txt +1 -1
- app.py +86 -35
- utils.py +177 -20
Transcripts/AMZN/2019-Apr-25-AMZN.txt
CHANGED
@@ -69,7 +69,7 @@ With that, we will move to Q&A. Operator, please remind our listeners how to ini
|
|
69 |
|
70 |
================================================================================
|
71 |
Questions and Answers
|
72 |
-
================================================================================
|
73 |
--------------------------------------------------------------------------------
|
74 |
Operator [1]
|
75 |
--------------------------------------------------------------------------------
|
|
|
69 |
|
70 |
================================================================================
|
71 |
Questions and Answers
|
72 |
+
================================================================================
|
73 |
--------------------------------------------------------------------------------
|
74 |
Operator [1]
|
75 |
--------------------------------------------------------------------------------
|
app.py
CHANGED
@@ -1,29 +1,31 @@
|
|
|
|
|
|
|
|
1 |
import pinecone
|
2 |
import streamlit as st
|
3 |
-
|
4 |
-
st.set_page_config(layout="wide")
|
5 |
-
|
6 |
-
import streamlit_scrollable_textbox as stx
|
7 |
-
import openai
|
8 |
from utils import (
|
|
|
|
|
|
|
|
|
9 |
get_data,
|
|
|
10 |
get_mpnet_embedding_model,
|
11 |
get_sgpt_embedding_model,
|
12 |
-
|
13 |
get_t5_model,
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
from utils import (
|
18 |
-
retrieve_transcript,
|
19 |
query_pinecone,
|
20 |
-
|
|
|
|
|
21 |
sentence_id_combine,
|
22 |
text_lookup,
|
23 |
-
generate_prompt,
|
24 |
-
gpt_model,
|
25 |
)
|
26 |
|
|
|
|
|
27 |
|
28 |
st.title("Abstractive Question Answering")
|
29 |
|
@@ -73,12 +75,14 @@ with st.sidebar:
|
|
73 |
st.subheader("Select Options:")
|
74 |
|
75 |
with st.sidebar:
|
76 |
-
num_results = int(
|
|
|
|
|
77 |
|
78 |
|
79 |
# Choose encoder model
|
80 |
|
81 |
-
encoder_models_choice = ["MPNET", "SGPT"]
|
82 |
with st.sidebar:
|
83 |
encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice)
|
84 |
|
@@ -97,18 +101,34 @@ with st.sidebar:
|
|
97 |
|
98 |
if encoder_model == "MPNET":
|
99 |
# Connect to pinecone environment
|
100 |
-
pinecone.init(
|
|
|
|
|
101 |
pinecone_index_name = "week2-all-mpnet-base"
|
102 |
pinecone_index = pinecone.Index(pinecone_index_name)
|
103 |
retriever_model = get_mpnet_embedding_model()
|
104 |
|
105 |
elif encoder_model == "SGPT":
|
106 |
# Connect to pinecone environment
|
107 |
-
pinecone.init(
|
|
|
|
|
108 |
pinecone_index_name = "week2-sgpt-125m"
|
109 |
pinecone_index = pinecone.Index(pinecone_index_name)
|
110 |
retriever_model = get_sgpt_embedding_model()
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
with st.sidebar:
|
114 |
window = int(st.number_input("Sentence Window Size", 0, 10, value=1))
|
@@ -116,23 +136,52 @@ with st.sidebar:
|
|
116 |
with st.sidebar:
|
117 |
threshold = float(
|
118 |
st.number_input(
|
119 |
-
label="Similarity Score Threshold",
|
|
|
|
|
|
|
120 |
)
|
121 |
)
|
122 |
|
123 |
data = get_data()
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
if threshold <= 0.90:
|
138 |
context_list = sentence_id_combine(data, query_results, lag=window)
|
@@ -145,7 +194,9 @@ prompt = generate_prompt(query_text, context_list)
|
|
145 |
if decoder_model == "GPT3 - (text-davinci-003)":
|
146 |
with col2:
|
147 |
with st.form("my_form"):
|
148 |
-
edited_prompt = st.text_area(
|
|
|
|
|
149 |
|
150 |
openai_key = st.text_input(
|
151 |
"Enter OpenAI key",
|
@@ -166,20 +217,20 @@ elif decoder_model == "T5":
|
|
166 |
output_text = []
|
167 |
for context_text in context_list:
|
168 |
output_text.append(t5_pipeline(context_text)[0]["summary_text"])
|
169 |
-
generated_text = ". ".join(output_text)
|
170 |
with col2:
|
171 |
st.subheader("Answer:")
|
172 |
-
|
|
|
173 |
|
174 |
elif decoder_model == "FLAN-T5":
|
175 |
flan_t5_pipeline = get_flan_t5_model()
|
176 |
output_text = []
|
177 |
for context_text in context_list:
|
178 |
output_text.append(flan_t5_pipeline(context_text)[0]["summary_text"])
|
179 |
-
generated_text = ". ".join(output_text)
|
180 |
with col2:
|
181 |
st.subheader("Answer:")
|
182 |
-
|
|
|
183 |
|
184 |
with col1:
|
185 |
with st.expander("See Retrieved Text"):
|
|
|
1 |
+
import openai
|
2 |
+
import streamlit_scrollable_textbox as stx
|
3 |
+
|
4 |
import pinecone
|
5 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
6 |
from utils import (
|
7 |
+
create_dense_embeddings,
|
8 |
+
create_sparse_embeddings,
|
9 |
+
format_query,
|
10 |
+
generate_prompt,
|
11 |
get_data,
|
12 |
+
get_flan_t5_model,
|
13 |
get_mpnet_embedding_model,
|
14 |
get_sgpt_embedding_model,
|
15 |
+
get_splade_sparse_embedding_model,
|
16 |
get_t5_model,
|
17 |
+
gpt_model,
|
18 |
+
hybrid_score_norm,
|
|
|
|
|
|
|
19 |
query_pinecone,
|
20 |
+
query_pinecone_sparse,
|
21 |
+
retrieve_transcript,
|
22 |
+
save_key,
|
23 |
sentence_id_combine,
|
24 |
text_lookup,
|
|
|
|
|
25 |
)
|
26 |
|
27 |
+
st.set_page_config(layout="wide")
|
28 |
+
|
29 |
|
30 |
st.title("Abstractive Question Answering")
|
31 |
|
|
|
75 |
st.subheader("Select Options:")
|
76 |
|
77 |
with st.sidebar:
|
78 |
+
num_results = int(
|
79 |
+
st.number_input("Number of Results to query", 1, 15, value=6)
|
80 |
+
)
|
81 |
|
82 |
|
83 |
# Choose encoder model
|
84 |
|
85 |
+
encoder_models_choice = ["MPNET", "SGPT", "Hybrid MPNET - SPLADE"]
|
86 |
with st.sidebar:
|
87 |
encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice)
|
88 |
|
|
|
101 |
|
102 |
if encoder_model == "MPNET":
|
103 |
# Connect to pinecone environment
|
104 |
+
pinecone.init(
|
105 |
+
api_key=st.secrets["pinecone_mpnet"], environment="us-east1-gcp"
|
106 |
+
)
|
107 |
pinecone_index_name = "week2-all-mpnet-base"
|
108 |
pinecone_index = pinecone.Index(pinecone_index_name)
|
109 |
retriever_model = get_mpnet_embedding_model()
|
110 |
|
111 |
elif encoder_model == "SGPT":
|
112 |
# Connect to pinecone environment
|
113 |
+
pinecone.init(
|
114 |
+
api_key=st.secrets["pinecone_sgpt"], environment="us-east1-gcp"
|
115 |
+
)
|
116 |
pinecone_index_name = "week2-sgpt-125m"
|
117 |
pinecone_index = pinecone.Index(pinecone_index_name)
|
118 |
retriever_model = get_sgpt_embedding_model()
|
119 |
|
120 |
+
elif encoder_model == "Hybrid MPNET - SPLADE":
|
121 |
+
pinecone.init(
|
122 |
+
api_key=st.secrets["pinecone_hybrid_splade_mpnet"],
|
123 |
+
environment="us-central1-gcp",
|
124 |
+
)
|
125 |
+
pinecone_index_name = "splade-mpnet"
|
126 |
+
pinecone_index = pinecone.Index(pinecone_index_name)
|
127 |
+
retriever_model = get_mpnet_embedding_model()
|
128 |
+
(
|
129 |
+
sparse_retriever_model,
|
130 |
+
sparse_retriever_tokenizer,
|
131 |
+
) = get_splade_sparse_embedding_model()
|
132 |
|
133 |
with st.sidebar:
|
134 |
window = int(st.number_input("Sentence Window Size", 0, 10, value=1))
|
|
|
136 |
with st.sidebar:
|
137 |
threshold = float(
|
138 |
st.number_input(
|
139 |
+
label="Similarity Score Threshold",
|
140 |
+
step=0.05,
|
141 |
+
format="%.2f",
|
142 |
+
value=0.25,
|
143 |
)
|
144 |
)
|
145 |
|
146 |
data = get_data()
|
147 |
|
148 |
+
if encoder_model == "Hybrid SGPT - SPLADE":
|
149 |
+
dense_query_embedding = create_dense_embeddings(
|
150 |
+
query_text, retriever_model
|
151 |
+
)
|
152 |
+
sparse_query_embedding = create_sparse_embeddings(
|
153 |
+
query_text, sparse_retriever_model, sparse_retriever_tokenizer
|
154 |
+
)
|
155 |
+
dense_query_embedding, sparse_query_embedding = hybrid_score_norm(
|
156 |
+
dense_query_embedding, sparse_query_embedding, 0
|
157 |
+
)
|
158 |
+
query_results = query_pinecone_sparse(
|
159 |
+
dense_query_embedding,
|
160 |
+
sparse_query_embedding,
|
161 |
+
num_results,
|
162 |
+
pinecone_index,
|
163 |
+
year,
|
164 |
+
quarter,
|
165 |
+
ticker,
|
166 |
+
participant_type,
|
167 |
+
threshold,
|
168 |
+
)
|
169 |
+
|
170 |
+
else:
|
171 |
+
dense_query_embedding = create_dense_embeddings(
|
172 |
+
query_text, retriever_model
|
173 |
+
)
|
174 |
+
query_results = query_pinecone(
|
175 |
+
dense_query_embedding,
|
176 |
+
num_results,
|
177 |
+
pinecone_index,
|
178 |
+
year,
|
179 |
+
quarter,
|
180 |
+
ticker,
|
181 |
+
participant_type,
|
182 |
+
threshold,
|
183 |
+
)
|
184 |
+
|
185 |
|
186 |
if threshold <= 0.90:
|
187 |
context_list = sentence_id_combine(data, query_results, lag=window)
|
|
|
194 |
if decoder_model == "GPT3 - (text-davinci-003)":
|
195 |
with col2:
|
196 |
with st.form("my_form"):
|
197 |
+
edited_prompt = st.text_area(
|
198 |
+
label="Model Prompt", value=prompt, height=270
|
199 |
+
)
|
200 |
|
201 |
openai_key = st.text_input(
|
202 |
"Enter OpenAI key",
|
|
|
217 |
output_text = []
|
218 |
for context_text in context_list:
|
219 |
output_text.append(t5_pipeline(context_text)[0]["summary_text"])
|
|
|
220 |
with col2:
|
221 |
st.subheader("Answer:")
|
222 |
+
for text in output_text:
|
223 |
+
st.markdown(f"- {text}")
|
224 |
|
225 |
elif decoder_model == "FLAN-T5":
|
226 |
flan_t5_pipeline = get_flan_t5_model()
|
227 |
output_text = []
|
228 |
for context_text in context_list:
|
229 |
output_text.append(flan_t5_pipeline(context_text)[0]["summary_text"])
|
|
|
230 |
with col2:
|
231 |
st.subheader("Answer:")
|
232 |
+
for text in output_text:
|
233 |
+
st.markdown(f"- {text}")
|
234 |
|
235 |
with col1:
|
236 |
with st.expander("See Retrieved Text"):
|
utils.py
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
-
import
|
2 |
-
import pandas as pd
|
3 |
import pandas as pd
|
4 |
-
|
5 |
-
import pinecone
|
6 |
import torch
|
7 |
from sentence_transformers import SentenceTransformer
|
|
|
8 |
from transformers import (
|
9 |
-
|
10 |
-
AutoTokenizer,
|
11 |
-
AutoModelForCausalLM,
|
12 |
AutoModelForSeq2SeqLM,
|
|
|
|
|
13 |
)
|
14 |
-
|
15 |
-
import
|
|
|
16 |
|
17 |
|
18 |
@st.experimental_singleton
|
@@ -32,7 +32,11 @@ def get_t5_model():
|
|
32 |
@st.experimental_singleton
|
33 |
def get_flan_t5_model():
|
34 |
return pipeline(
|
35 |
-
"summarization",
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
|
38 |
|
@@ -46,6 +50,18 @@ def get_mpnet_embedding_model():
|
|
46 |
return model
|
47 |
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
@st.experimental_singleton
|
50 |
def get_sgpt_embedding_model():
|
51 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -61,20 +77,152 @@ def save_key(api_key):
|
|
61 |
return api_key
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def query_pinecone(
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
):
|
67 |
if participant_type == "Company Speaker":
|
68 |
participant = "Answer"
|
69 |
else:
|
70 |
participant = "Question"
|
71 |
-
# generate embeddings for the query
|
72 |
-
xq = model.encode([query]).tolist()
|
73 |
|
74 |
if year == "All":
|
75 |
if quarter == "All":
|
76 |
xc = index.query(
|
77 |
-
|
78 |
top_k=top_k,
|
79 |
filter={
|
80 |
"Year": {
|
@@ -94,7 +242,7 @@ def query_pinecone(
|
|
94 |
)
|
95 |
else:
|
96 |
xc = index.query(
|
97 |
-
|
98 |
top_k=top_k,
|
99 |
filter={
|
100 |
"Year": {
|
@@ -115,7 +263,7 @@ def query_pinecone(
|
|
115 |
else:
|
116 |
# search pinecone index for context passage with the answer
|
117 |
xc = index.query(
|
118 |
-
|
119 |
top_k=top_k,
|
120 |
filter={
|
121 |
"Year": int(year),
|
@@ -136,24 +284,33 @@ def query_pinecone(
|
|
136 |
|
137 |
def format_query(query_results):
|
138 |
# extract passage_text from Pinecone search result
|
139 |
-
context = [
|
|
|
|
|
140 |
return context
|
141 |
|
142 |
|
143 |
def sentence_id_combine(data, query_results, lag=1):
|
144 |
# Extract sentence IDs from query results
|
145 |
-
ids = [
|
|
|
|
|
|
|
146 |
# Generate new IDs by adding a lag value to the original IDs
|
147 |
new_ids = [id + i for id in ids for i in range(-lag, lag + 1)]
|
148 |
# Remove duplicates and sort the new IDs
|
149 |
new_ids = sorted(set(new_ids))
|
150 |
# Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1
|
151 |
lookup_ids = [
|
152 |
-
new_ids[i : i + (lag * 2 + 1)]
|
|
|
153 |
]
|
154 |
# Create a list of context sentences by joining the sentences corresponding to the lookup IDs
|
155 |
context_list = [
|
156 |
-
" ".join(
|
|
|
|
|
|
|
157 |
]
|
158 |
return context_list
|
159 |
|
|
|
1 |
+
import openai
|
|
|
2 |
import pandas as pd
|
3 |
+
import streamlit_scrollable_textbox as stx
|
|
|
4 |
import torch
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
+
from tqdm import tqdm
|
7 |
from transformers import (
|
8 |
+
AutoModelForMaskedLM,
|
|
|
|
|
9 |
AutoModelForSeq2SeqLM,
|
10 |
+
AutoTokenizer,
|
11 |
+
pipeline,
|
12 |
)
|
13 |
+
|
14 |
+
import pinecone
|
15 |
+
import streamlit as st
|
16 |
|
17 |
|
18 |
@st.experimental_singleton
|
|
|
32 |
@st.experimental_singleton
|
33 |
def get_flan_t5_model():
|
34 |
return pipeline(
|
35 |
+
"summarization",
|
36 |
+
model="google/flan-t5-small",
|
37 |
+
tokenizer="google/flan-t5-small",
|
38 |
+
max_length=512,
|
39 |
+
# length_penalty = 0
|
40 |
)
|
41 |
|
42 |
|
|
|
50 |
return model
|
51 |
|
52 |
|
53 |
+
@st.experimental_singleton
|
54 |
+
def get_splade_sparse_embedding_model():
|
55 |
+
model_sparse = "naver/splade-cocondenser-ensembledistil"
|
56 |
+
# check device
|
57 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_sparse)
|
59 |
+
model_sparse = AutoModelForMaskedLM.from_pretrained(model_sparse)
|
60 |
+
# move to gpu if available
|
61 |
+
model_sparse.to(device)
|
62 |
+
return model_sparse, tokenizer
|
63 |
+
|
64 |
+
|
65 |
@st.experimental_singleton
|
66 |
def get_sgpt_embedding_model():
|
67 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
77 |
return api_key
|
78 |
|
79 |
|
80 |
+
def create_dense_embeddings(query, model):
|
81 |
+
dense_emb = model.encode([query]).tolist()
|
82 |
+
return dense_emb
|
83 |
+
|
84 |
+
|
85 |
+
def create_sparse_embeddings(query, model, tokenizer):
|
86 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
87 |
+
inputs = tokenizer(query, return_tensors="pt").to(device)
|
88 |
+
|
89 |
+
with torch.no_grad():
|
90 |
+
logits = model(**inputs).logits
|
91 |
+
|
92 |
+
inter = torch.log1p(torch.relu(logits[0]))
|
93 |
+
token_max = torch.max(inter, dim=0) # sum over input tokens
|
94 |
+
nz_tokens = torch.where(token_max.values > 0)[0]
|
95 |
+
nz_weights = token_max.values[nz_tokens]
|
96 |
+
|
97 |
+
order = torch.sort(nz_weights, descending=True)
|
98 |
+
nz_weights = nz_weights[order[1]]
|
99 |
+
nz_tokens = nz_tokens[order[1]]
|
100 |
+
return {
|
101 |
+
"indices": nz_tokens.cpu().numpy().tolist(),
|
102 |
+
"values": nz_weights.cpu().numpy().tolist(),
|
103 |
+
}
|
104 |
+
|
105 |
+
|
106 |
+
def hybrid_score_norm(dense, sparse, alpha: float):
|
107 |
+
"""Hybrid score using a convex combination
|
108 |
+
|
109 |
+
alpha * dense + (1 - alpha) * sparse
|
110 |
+
|
111 |
+
Args:
|
112 |
+
dense: Array of floats representing
|
113 |
+
sparse: a dict of `indices` and `values`
|
114 |
+
alpha: scale between 0 and 1
|
115 |
+
"""
|
116 |
+
if alpha < 0 or alpha > 1:
|
117 |
+
raise ValueError("Alpha must be between 0 and 1")
|
118 |
+
hs = {
|
119 |
+
"indices": sparse["indices"],
|
120 |
+
"values": [v * (1 - alpha) for v in sparse["values"]],
|
121 |
+
}
|
122 |
+
return [v * alpha for v in dense], hs
|
123 |
+
|
124 |
+
|
125 |
+
def query_pinecone_sparse(
|
126 |
+
dense_vec,
|
127 |
+
sparse_vec,
|
128 |
+
top_k,
|
129 |
+
index,
|
130 |
+
year,
|
131 |
+
quarter,
|
132 |
+
ticker,
|
133 |
+
participant_type,
|
134 |
+
threshold=0.25,
|
135 |
+
):
|
136 |
+
if participant_type == "Company Speaker":
|
137 |
+
participant = "Answer"
|
138 |
+
else:
|
139 |
+
participant = "Question"
|
140 |
+
|
141 |
+
if year == "All":
|
142 |
+
if quarter == "All":
|
143 |
+
xc = index.query(
|
144 |
+
vector=dense_vec,
|
145 |
+
sparse_vector=sparse_vec,
|
146 |
+
top_k=top_k,
|
147 |
+
filter={
|
148 |
+
"Year": {
|
149 |
+
"$in": [
|
150 |
+
int("2020"),
|
151 |
+
int("2019"),
|
152 |
+
int("2018"),
|
153 |
+
int("2017"),
|
154 |
+
int("2016"),
|
155 |
+
]
|
156 |
+
},
|
157 |
+
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
158 |
+
"Ticker": {"$eq": ticker},
|
159 |
+
"QA_Flag": {"$eq": participant},
|
160 |
+
},
|
161 |
+
include_metadata=True,
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
xc = index.query(
|
165 |
+
vector=dense_vec,
|
166 |
+
sparse_vector=sparse_vec,
|
167 |
+
top_k=top_k,
|
168 |
+
filter={
|
169 |
+
"Year": {
|
170 |
+
"$in": [
|
171 |
+
int("2020"),
|
172 |
+
int("2019"),
|
173 |
+
int("2018"),
|
174 |
+
int("2017"),
|
175 |
+
int("2016"),
|
176 |
+
]
|
177 |
+
},
|
178 |
+
"Quarter": {"$eq": quarter},
|
179 |
+
"Ticker": {"$eq": ticker},
|
180 |
+
"QA_Flag": {"$eq": participant},
|
181 |
+
},
|
182 |
+
include_metadata=True,
|
183 |
+
)
|
184 |
+
else:
|
185 |
+
# search pinecone index for context passage with the answer
|
186 |
+
xc = index.query(
|
187 |
+
vector=dense_vec,
|
188 |
+
sparse_vector=sparse_vec,
|
189 |
+
top_k=top_k,
|
190 |
+
filter={
|
191 |
+
"Year": int(year),
|
192 |
+
"Quarter": {"$eq": quarter},
|
193 |
+
"Ticker": {"$eq": ticker},
|
194 |
+
"QA_Flag": {"$eq": participant},
|
195 |
+
},
|
196 |
+
include_metadata=True,
|
197 |
+
)
|
198 |
+
# filter the context passages based on the score threshold
|
199 |
+
filtered_matches = []
|
200 |
+
for match in xc["matches"]:
|
201 |
+
if match["score"] >= threshold:
|
202 |
+
filtered_matches.append(match)
|
203 |
+
xc["matches"] = filtered_matches
|
204 |
+
return xc
|
205 |
+
|
206 |
+
|
207 |
def query_pinecone(
|
208 |
+
dense_vec,
|
209 |
+
top_k,
|
210 |
+
index,
|
211 |
+
year,
|
212 |
+
quarter,
|
213 |
+
ticker,
|
214 |
+
participant_type,
|
215 |
+
threshold=0.25,
|
216 |
):
|
217 |
if participant_type == "Company Speaker":
|
218 |
participant = "Answer"
|
219 |
else:
|
220 |
participant = "Question"
|
|
|
|
|
221 |
|
222 |
if year == "All":
|
223 |
if quarter == "All":
|
224 |
xc = index.query(
|
225 |
+
vector=dense_vec,
|
226 |
top_k=top_k,
|
227 |
filter={
|
228 |
"Year": {
|
|
|
242 |
)
|
243 |
else:
|
244 |
xc = index.query(
|
245 |
+
vector=dense_vec,
|
246 |
top_k=top_k,
|
247 |
filter={
|
248 |
"Year": {
|
|
|
263 |
else:
|
264 |
# search pinecone index for context passage with the answer
|
265 |
xc = index.query(
|
266 |
+
vector=dense_vec,
|
267 |
top_k=top_k,
|
268 |
filter={
|
269 |
"Year": int(year),
|
|
|
284 |
|
285 |
def format_query(query_results):
|
286 |
# extract passage_text from Pinecone search result
|
287 |
+
context = [
|
288 |
+
result["metadata"]["Text"] for result in query_results["matches"]
|
289 |
+
]
|
290 |
return context
|
291 |
|
292 |
|
293 |
def sentence_id_combine(data, query_results, lag=1):
|
294 |
# Extract sentence IDs from query results
|
295 |
+
ids = [
|
296 |
+
result["metadata"]["Sentence_id"]
|
297 |
+
for result in query_results["matches"]
|
298 |
+
]
|
299 |
# Generate new IDs by adding a lag value to the original IDs
|
300 |
new_ids = [id + i for id in ids for i in range(-lag, lag + 1)]
|
301 |
# Remove duplicates and sort the new IDs
|
302 |
new_ids = sorted(set(new_ids))
|
303 |
# Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1
|
304 |
lookup_ids = [
|
305 |
+
new_ids[i : i + (lag * 2 + 1)]
|
306 |
+
for i in range(0, len(new_ids), lag * 2 + 1)
|
307 |
]
|
308 |
# Create a list of context sentences by joining the sentences corresponding to the lookup IDs
|
309 |
context_list = [
|
310 |
+
" ".join(
|
311 |
+
data.loc[data["Sentence_id"].isin(lookup_id), "Text"].to_list()
|
312 |
+
)
|
313 |
+
for lookup_id in lookup_ids
|
314 |
]
|
315 |
return context_list
|
316 |
|