import re import openai import streamlit_scrollable_textbox as stx import pinecone import streamlit as st st.set_page_config(layout="wide") # isort: split from utils.entity_extraction import ( clean_entities, extract_quarter_year, extract_ticker_spacy, format_entities_flan_alpaca, generate_alpaca_ner_prompt, extract_keywords ) from utils.models import ( generate_entities_flan_alpaca_checkpoint, generate_entities_flan_alpaca_inference_api, generate_text_flan_t5, get_data, get_alpaca_model, get_flan_alpaca_xl_model, get_flan_t5_model, get_instructor_embedding_model, get_mpnet_embedding_model, get_sgpt_embedding_model, get_spacy_model, get_splade_sparse_embedding_model, get_t5_model, gpt_turbo_model, save_key, ) from utils.prompts import ( generate_flant5_prompt_instruct_chunk_context, generate_flant5_prompt_instruct_chunk_context_single, generate_flant5_prompt_instruct_complete_context, generate_flant5_prompt_summ_chunk_context, generate_flant5_prompt_summ_chunk_context_single, generate_gpt_j_two_shot_prompt_1, generate_gpt_j_two_shot_prompt_2, generate_gpt_prompt_alpaca, generate_gpt_prompt_alpaca_multi_doc, generate_gpt_prompt_alpaca_multi_doc_multi_company, generate_gpt_prompt_original, generate_multi_doc_context, get_context_list_prompt, ) from utils.retriever import ( format_query, query_pinecone, query_pinecone_sparse, sentence_id_combine, text_lookup, year_quarter_range, ) from utils.transcript_retrieval import retrieve_transcript from utils.vector_index import ( create_dense_embeddings, create_sparse_embeddings, hybrid_score_norm, ) st.title("Question Answering on Earnings Call Transcripts") st.write( "The app uses the quarterly earnings call transcripts for 10 companies (Apple, AMD, Amazon, Cisco, Google, Microsoft, Nvidia, ASML, Intel, Micron) for the years 2016 to 2020." ) col1, col2 = st.columns([3, 3], gap="medium") with st.sidebar: ner_choice = st.selectbox("Select NER Model", ["Spacy", "Alpaca"]) document_type = st.selectbox( "Select Query Type", ["Single-Document", "Multi-Document"] ) if document_type == "Multi-Document": multi_company_choice = st.selectbox( "Select Company Query Type", ["Single-Company", "Compare Companies"], ) if ner_choice == "Spacy": ner_model = get_spacy_model() alpaca_model = get_alpaca_model() with col1: st.subheader("Question") if document_type == "Single-Document": query_text = st.text_area( "Input Query", value="What was discussed regarding Wearables revenue performance?", ) else: if multi_company_choice == "Single-Company": query_text = st.text_area( "Input Query", value="What was the reported revenue for Wearables over the last 2 years?", ) else: query_text = st.text_area( "Input Query", value="How was AAPL's capex spend compared to GOOGL?", ) # Extract keywords from query keywords = extract_keywords(query_text, alpaca_model) years_choice = ["2020", "2019", "2018", "2017", "2016", "All"] quarters_choice = ["Q1", "Q2", "Q3", "Q4", "All"] ticker_choice = [ "AAPL", "CSCO", "MSFT", "ASML", "NVDA", "GOOGL", "MU", "INTC", "AMZN", "AMD", ] if document_type == "Single-Document": if ner_choice == "Alpaca": ner_prompt = generate_alpaca_ner_prompt(query_text) entity_text = generate_entities_flan_alpaca_inference_api(ner_prompt) company_ent, quarter_ent, year_ent = format_entities_flan_alpaca( entity_text ) else: company_ent = extract_ticker_spacy(query_text, ner_model) quarter_ent, year_ent = extract_quarter_year(query_text) ticker_index, quarter_index, year_index = clean_entities( company_ent, quarter_ent, year_ent ) with col1: # Hardcoding the defaults for a question without metadata if ( query_text == "What was discussed regarding Wearables revenue performance?" ): year = st.selectbox("Year", years_choice) quarter = st.selectbox("Quarter", quarters_choice) ticker = st.selectbox("Company", ticker_choice) else: year = st.selectbox("Year", years_choice, index=year_index) quarter = st.selectbox( "Quarter", quarters_choice, index=quarter_index ) ticker = st.selectbox("Company", ticker_choice, ticker_index) participant_type = st.selectbox( "Speaker", ["Company Speaker", "Analyst"] ) else: # Multi-Document Case with col1: # Single Company Summary if multi_company_choice == "Single-Company": # Hardcoding the defaults for a question without metadata if ( query_text == "What was the reported revenue for Wearables over the last 2 years?" ): start_year = st.selectbox("Start Year", years_choice, index=2) start_quarter = st.selectbox( "Start Quarter", quarters_choice, index=0 ) end_year = st.selectbox("End Year", years_choice, index=0) end_quarter = st.selectbox( "End Quarter", quarters_choice, index=0 ) ticker = st.selectbox("Company", ticker_choice, index=0) else: start_year = st.selectbox("Start Year", years_choice, index=2) start_quarter = st.selectbox( "Start Quarter", quarters_choice, index=0 ) end_year = st.selectbox("End Year", years_choice, index=0) end_quarter = st.selectbox( "End Quarter", quarters_choice, index=0 ) ticker = st.selectbox("Company", ticker_choice, index=0) # Single Company Summary if multi_company_choice == "Compare Companies": # Hardcoding the defaults for a question without metadata if query_text == "How was AAPL's capex spend compared to GOOGL?": start_year = st.selectbox("Start Year", years_choice, index=1) start_quarter = st.selectbox( "Start Quarter", quarters_choice, index=0 ) end_year = st.selectbox("End Year", years_choice, index=0) end_quarter = st.selectbox( "End Quarter", quarters_choice, index=0 ) ticker_first = st.selectbox( "First Company", ticker_choice, index=0 ) ticker_second = st.selectbox( "Second Company", ticker_choice, index=5 ) else: start_year = st.selectbox("Start Year", years_choice, index=2) start_quarter = st.selectbox( "Start Quarter", quarters_choice, index=0 ) end_year = st.selectbox("End Year", years_choice, index=0) end_quarter = st.selectbox( "End Quarter", quarters_choice, index=0 ) ticker_first = st.selectbox( "First Company", ticker_choice, index=0 ) ticker_second = st.selectbox( "Second Company", ticker_choice, index=1 ) participant_type = st.selectbox( "Speaker", ["Company Speaker", "Analyst"] ) with st.sidebar: st.subheader("Select Options:") if document_type == "Single-Document": num_results = int( st.number_input("Number of Results to query", 1, 15, value=5) ) else: num_results = int( st.number_input("Number of Results to query", 1, 15, value=4) ) # Choose encoder model encoder_models_choice = [ "MPNET", "Instructor", "Hybrid Instructor - SPLADE", "SGPT", "Hybrid MPNET - SPLADE", ] with st.sidebar: encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice) # Choose decoder model # Restricting multi-document to only GPT-3 if document_type == "Single-Document": decoder_models_choice = ["GPT-3.5 Turbo", "T5", "FLAN-T5", "GPT-J"] else: decoder_models_choice = ["GPT-3.5 Turbo"] with st.sidebar: decoder_model = st.selectbox("Select Decoder Model", decoder_models_choice) if encoder_model == "MPNET": # Connect to pinecone environment pinecone.init( api_key=st.secrets["pinecone_mpnet"], environment="us-east1-gcp" ) pinecone_index_name = "week2-all-mpnet-base" pinecone_index = pinecone.Index(pinecone_index_name) retriever_model = get_mpnet_embedding_model() elif encoder_model == "SGPT": # Connect to pinecone environment pinecone.init( api_key=st.secrets["pinecone_sgpt"], environment="us-east1-gcp" ) pinecone_index_name = "week2-sgpt-125m" pinecone_index = pinecone.Index(pinecone_index_name) retriever_model = get_sgpt_embedding_model() elif encoder_model == "Instructor": # Connect to pinecone environment pinecone.init( api_key=st.secrets["pinecone_instructor"], environment="us-west4-gcp-free", ) pinecone_index_name = "week13-instructor-xl" pinecone_index = pinecone.Index(pinecone_index_name) retriever_model = get_instructor_embedding_model() instruction = ( "Represent the financial question for retrieving supporting documents:" ) elif encoder_model == "Hybrid Instructor - SPLADE": # Connect to pinecone environment pinecone.init( api_key=st.secrets["pinecone_instructor_splade"], environment="us-west4-gcp-free", ) pinecone_index_name = "week13-splade-instructor-xl" pinecone_index = pinecone.Index(pinecone_index_name) retriever_model = get_instructor_embedding_model() ( sparse_retriever_model, sparse_retriever_tokenizer, ) = get_splade_sparse_embedding_model() instruction = ( "Represent the financial question for retrieving supporting documents:" ) elif encoder_model == "Hybrid MPNET - SPLADE": pinecone.init( api_key=st.secrets["pinecone_hybrid_splade_mpnet"], environment="us-central1-gcp", ) pinecone_index_name = "splade-mpnet" pinecone_index = pinecone.Index(pinecone_index_name) retriever_model = get_mpnet_embedding_model() ( sparse_retriever_model, sparse_retriever_tokenizer, ) = get_splade_sparse_embedding_model() with st.sidebar: if document_type == "Single-Document": window = int(st.number_input("Sentence Window Size", 0, 10, value=1)) threshold = float( st.number_input( label="Similarity Score Threshold", step=0.05, format="%.2f", value=0.25, ) ) else: window = int(st.number_input("Sentence Window Size", 0, 10, value=1)) threshold = float( st.number_input( label="Similarity Score Threshold", step=0.05, format="%.2f", value=0.6, ) ) data = get_data() if document_type == "Single-Document": if encoder_model in ["Hybrid SGPT - SPLADE", "Hybrid Instructor - SPLADE"]: if encoder_model == "Hybrid Instructor - SPLADE": dense_query_embedding = create_dense_embeddings( query_text, retriever_model, instruction ) else: dense_query_embedding = create_dense_embeddings( query_text, retriever_model ) sparse_query_embedding = create_sparse_embeddings( query_text, sparse_retriever_model, sparse_retriever_tokenizer ) dense_query_embedding, sparse_query_embedding = hybrid_score_norm( dense_query_embedding, sparse_query_embedding, 0.3 ) query_results = query_pinecone_sparse( dense_query_embedding, sparse_query_embedding, num_results, pinecone_index, year, quarter, ticker, participant_type, keywords, threshold, ) else: if encoder_model == "Instructor": dense_query_embedding = create_dense_embeddings( query_text, retriever_model, instruction ) else: dense_query_embedding = create_dense_embeddings( query_text, retriever_model ) query_results = query_pinecone( dense_query_embedding, num_results, pinecone_index, year, quarter, ticker, participant_type, threshold, ) if threshold <= 0.90: context_list = sentence_id_combine(data, query_results, lag=window) else: context_list = format_query(query_results) else: # Multi-Document Retreival # Single Company if multi_company_choice == "Single-Company": if encoder_model in [ "Hybrid SGPT - SPLADE", "Hybrid Instructor - SPLADE", ]: if encoder_model == "Hybrid Instructor - SPLADE": dense_query_embedding = create_dense_embeddings( query_text, retriever_model, instruction ) else: dense_query_embedding = create_dense_embeddings( query_text, retriever_model ) sparse_query_embedding = create_sparse_embeddings( query_text, sparse_retriever_model, sparse_retriever_tokenizer ) dense_query_embedding, sparse_query_embedding = hybrid_score_norm( dense_query_embedding, sparse_query_embedding, 0.3 ) year_quarter_list = year_quarter_range( start_quarter, start_year, end_quarter, end_year ) context_group = [] for year, quarter in year_quarter_list: query_results = query_pinecone_sparse( dense_query_embedding, sparse_query_embedding, num_results, pinecone_index, year, quarter, ticker, participant_type, threshold, ) results_list = sentence_id_combine( data, query_results, lag=window ) context_group.append((results_list, year, quarter, ticker)) else: if encoder_model == "Instructor": dense_query_embedding = create_dense_embeddings( query_text, retriever_model, instruction ) else: dense_query_embedding = create_dense_embeddings( query_text, retriever_model ) year_quarter_list = year_quarter_range( start_quarter, start_year, end_quarter, end_year ) context_group = [] for year, quarter in year_quarter_list: query_results = query_pinecone( dense_query_embedding, num_results, pinecone_index, year, quarter, ticker, participant_type, threshold, ) results_list = sentence_id_combine( data, query_results, lag=window ) context_group.append((results_list, year, quarter, ticker)) multi_doc_context = generate_multi_doc_context(context_group) # Companies Comparison else: if encoder_model in [ "Hybrid SGPT - SPLADE", "Hybrid Instructor - SPLADE", ]: if encoder_model == "Hybrid Instructor - SPLADE": dense_query_embedding = create_dense_embeddings( query_text, retriever_model, instruction ) else: dense_query_embedding = create_dense_embeddings( query_text, retriever_model ) sparse_query_embedding = create_sparse_embeddings( query_text, sparse_retriever_model, sparse_retriever_tokenizer ) dense_query_embedding, sparse_query_embedding = hybrid_score_norm( dense_query_embedding, sparse_query_embedding, 0.3 ) year_quarter_list = year_quarter_range( start_quarter, start_year, end_quarter, end_year ) # First Company Context context_group_first = [] for year, quarter in year_quarter_list: query_results = query_pinecone_sparse( dense_query_embedding, sparse_query_embedding, num_results, pinecone_index, year, quarter, ticker_first, participant_type, threshold, ) results_list = sentence_id_combine( data, query_results, lag=window ) context_group_first.append( (results_list, year, quarter, ticker_first) ) # Second Company Context context_group_second = [] for year, quarter in year_quarter_list: query_results = query_pinecone_sparse( dense_query_embedding, sparse_query_embedding, num_results, pinecone_index, year, quarter, ticker_second, participant_type, threshold, ) results_list = sentence_id_combine( data, query_results, lag=window ) context_group_second.append( (results_list, year, quarter, ticker_second) ) else: if encoder_model == "Instructor": dense_query_embedding = create_dense_embeddings( query_text, retriever_model, instruction ) else: dense_query_embedding = create_dense_embeddings( query_text, retriever_model ) year_quarter_list = year_quarter_range( start_quarter, start_year, end_quarter, end_year ) # First Company Context context_group_first = [] for year, quarter in year_quarter_list: query_results = query_pinecone( dense_query_embedding, num_results, pinecone_index, year, quarter, ticker_first, participant_type, threshold, ) results_list = sentence_id_combine( data, query_results, lag=window ) context_group_first.append( (results_list, year, quarter, ticker_first) ) # Second Company Context context_group_second = [] for year, quarter in year_quarter_list: query_results = query_pinecone( dense_query_embedding, num_results, pinecone_index, year, quarter, ticker_second, participant_type, threshold, ) results_list = sentence_id_combine( data, query_results, lag=window ) context_group_second.append( (results_list, year, quarter, ticker_second) ) multi_doc_context_first = generate_multi_doc_context( context_group_first ) multi_doc_context_second = generate_multi_doc_context( context_group_second ) if decoder_model == "GPT-3.5 Turbo": if document_type == "Single-Document": prompt = generate_gpt_prompt_alpaca(query_text, context_list) else: if multi_company_choice == "Single-Company": prompt = generate_gpt_prompt_alpaca_multi_doc( query_text, context_group ) else: prompt = generate_gpt_prompt_alpaca_multi_doc_multi_company( query_text, context_group_first, context_group_second ) with col2: with st.form("my_form"): edited_prompt = st.text_area( label="Model Prompt", value=prompt, height=400 ) openai_key = st.text_input( "Enter OpenAI key", value="", type="password", ) submitted = st.form_submit_button("Submit") if submitted: api_key = save_key(openai_key) openai.api_key = api_key generated_text = gpt_turbo_model(edited_prompt) st.subheader("Answer:") regex_pattern_sentences = ( "(?
{answer_text}
{context_text}
{context_text}