awinml commited on
Commit
aeaab1d
1 Parent(s): ce5d7aa

Upload 18 files (#4)

Browse files

- Upload 18 files (d1d28c6c47c048685210bcfc878035049b909f29)

app.py CHANGED
@@ -195,7 +195,7 @@ with col1:
195
  )
196
 
197
  if decoder_model == "GPT-3.5 Turbo":
198
- with col1:
199
  with st.form("gpt_form"):
200
  openai_key = st.text_input(
201
  "Enter OpenAI key",
@@ -208,23 +208,31 @@ if decoder_model == "GPT-3.5 Turbo":
208
  openai.api_key = api_key
209
  generated_text = gpt_turbo_model(edited_prompt)
210
 
 
 
 
 
 
 
 
 
 
 
211
  if decoder_model == "Vicuna-7B":
212
  with col2:
213
  st.write("The Vicuna Model is running: ...")
214
  st.write("The model takes 10-15 mins to generate the text.")
215
- generated_text = vicuna_text_generate(prompt, vicuna_text_gen_model)
216
-
 
 
 
 
 
 
 
 
217
 
218
- with col2:
219
- st.subheader("Answer:")
220
- regex_pattern_sentences = "(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
221
- generated_text_list = re.split(regex_pattern_sentences, generated_text)
222
- for answer_text in generated_text_list:
223
- answer_text = f"""{answer_text}"""
224
- st.write(
225
- f"<ul><li><p>{answer_text}</p></li></ul>",
226
- unsafe_allow_html=True,
227
- )
228
 
229
 
230
  tab1, tab2 = st.tabs(["Retrieved Text", "Retrieved Documents"])
 
195
  )
196
 
197
  if decoder_model == "GPT-3.5 Turbo":
198
+ with col2:
199
  with st.form("gpt_form"):
200
  openai_key = st.text_input(
201
  "Enter OpenAI key",
 
208
  openai.api_key = api_key
209
  generated_text = gpt_turbo_model(edited_prompt)
210
 
211
+ st.subheader("Answer:")
212
+ regex_pattern_sentences = "(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
213
+ generated_text_list = re.split(regex_pattern_sentences, generated_text)
214
+ for answer_text in generated_text_list:
215
+ answer_text = f"""{answer_text}"""
216
+ st.write(
217
+ f"<ul><li><p>{answer_text}</p></li></ul>",
218
+ unsafe_allow_html=True,
219
+ )
220
+
221
  if decoder_model == "Vicuna-7B":
222
  with col2:
223
  st.write("The Vicuna Model is running: ...")
224
  st.write("The model takes 10-15 mins to generate the text.")
225
+ generated_text = vicuna_text_generate(prompt, vicuna_text_gen_model)
226
+ st.subheader("Answer:")
227
+ regex_pattern_sentences = "(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
228
+ generated_text_list = re.split(regex_pattern_sentences, generated_text)
229
+ for answer_text in generated_text_list:
230
+ answer_text = f"""{answer_text}"""
231
+ st.write(
232
+ f"<ul><li><p>{answer_text}</p></li></ul>",
233
+ unsafe_allow_html=True,
234
+ )
235
 
 
 
 
 
 
 
 
 
 
 
236
 
237
 
238
  tab1, tab2 = st.tabs(["Retrieved Text", "Retrieved Documents"])
utils/__pycache__/entity_extraction.cpython-38.pyc CHANGED
Binary files a/utils/__pycache__/entity_extraction.cpython-38.pyc and b/utils/__pycache__/entity_extraction.cpython-38.pyc differ
 
utils/__pycache__/models.cpython-38.pyc CHANGED
Binary files a/utils/__pycache__/models.cpython-38.pyc and b/utils/__pycache__/models.cpython-38.pyc differ
 
utils/__pycache__/nltkmodules.cpython-38.pyc ADDED
Binary file (284 Bytes). View file
 
utils/entity_extraction.py CHANGED
@@ -7,20 +7,21 @@ from nltk.stem import PorterStemmer, WordNetLemmatizer
7
 
8
  def generate_ner_docs_prompt(query):
9
  prompt = """USER: Extract the company names and time duration mentioned in the question. The entities should be extracted in the following format: {"companies": list of companies mentioned in the question,"start-duration": ("start-quarter", "start-year"), "end-duration": ("end-quarter", "end-year")}. Return {"companies": None, "start-duration": (None, None), "end-duration": (None, None)} if the entities are not found.
 
10
  Examples:
11
- What did analysts ask about the Wearables during AAPL's earnings call?
12
- {"companies": ["AAPL"], "start-duration": (None, None), "end-duration": (None, None)}
13
  What is Intel's update on the server chip roadmap and strategy for Q1 2019?
14
  {"companies": ["Intel"], "start-duration": ("Q1", "2019"), "end-duration": ("Q1", "2019")}
15
  What are the opportunities and challenges in the Indian market for Amazon in 2016?
16
  {"companies": ["Amazon"], "start-duration": ("Q1", "2016"), "end-duration": ("Q4", "2016")}
 
 
17
  What is the comparative performance analysis between Intel and AMD in key overlapping segments such as PC, Gaming, and Data Centers in Q2 to Q3 2018?
18
  {"companies": ["Intel", "AMD"], "start-duration": ("Q2", "2018"), "end-duration": ("Q3", "2018")}
19
  How did Microsoft and Amazon perform in terms of reliability and scalability of cloud for the years 2016 and 2017?
20
  {"companies": ["Microsoft", "Amazon"], "start-duration": ("Q1", "2016"), "end-duration": ("Q4", "2017")}"""
21
  input_prompt = f"""###Input: {query}
22
  ASSISTANT:"""
23
- final_prompt = prompt + "\n" + input_prompt
24
  return final_prompt
25
 
26
 
 
7
 
8
  def generate_ner_docs_prompt(query):
9
  prompt = """USER: Extract the company names and time duration mentioned in the question. The entities should be extracted in the following format: {"companies": list of companies mentioned in the question,"start-duration": ("start-quarter", "start-year"), "end-duration": ("end-quarter", "end-year")}. Return {"companies": None, "start-duration": (None, None), "end-duration": (None, None)} if the entities are not found.
10
+
11
  Examples:
 
 
12
  What is Intel's update on the server chip roadmap and strategy for Q1 2019?
13
  {"companies": ["Intel"], "start-duration": ("Q1", "2019"), "end-duration": ("Q1", "2019")}
14
  What are the opportunities and challenges in the Indian market for Amazon in 2016?
15
  {"companies": ["Amazon"], "start-duration": ("Q1", "2016"), "end-duration": ("Q4", "2016")}
16
+ What did analysts ask about the Cisco's Webex?
17
+ {"companies": ["Cisco"], "start-duration": (None, None), "end-duration": (None, None)}
18
  What is the comparative performance analysis between Intel and AMD in key overlapping segments such as PC, Gaming, and Data Centers in Q2 to Q3 2018?
19
  {"companies": ["Intel", "AMD"], "start-duration": ("Q2", "2018"), "end-duration": ("Q3", "2018")}
20
  How did Microsoft and Amazon perform in terms of reliability and scalability of cloud for the years 2016 and 2017?
21
  {"companies": ["Microsoft", "Amazon"], "start-duration": ("Q1", "2016"), "end-duration": ("Q4", "2017")}"""
22
  input_prompt = f"""###Input: {query}
23
  ASSISTANT:"""
24
+ final_prompt = prompt + "\n\n" + input_prompt
25
  return final_prompt
26
 
27