import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer import time import numpy as np from torch.nn import functional as F import os from threading import Thread model_path = "ayoolaolafenwa/ChatLM" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map = "auto", torch_dtype=torch.bfloat16, load_in_8bit=True) class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [0] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False def user(message, history): # Append the user's message to the conversation history return "", history + [[message, ""]] def chat(curr_system_message, history): # Initialize a StopOnTokens object stop = StopOnTokens() # Construct the input message string for the model by concatenating the current system message and conversation history messages = curr_system_message + \ "".join(["".join([": "+item[0], ": "+item[1]]) for item in history]) # Tokenize the messages string tokens = tokenizer([messages], return_tensors="pt").to("cuda") streamer = TextIteratorStreamer( tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) token_ids = tokens.input_ids attention_mask=tokens.attention_mask generate_kwargs = dict( input_ids=token_ids, attention_mask = attention_mask, streamer = streamer, max_length=2048, do_sample=True, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, temperature = 0.5, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() #Initialize an empty string to store the generated text partial_text = "" for new_text in streamer: # print(new_text) partial_text += new_text history[-1][1] = partial_text # Yield an empty string to cleanup the message textbox and the updated conversation history yield history return partial_text with gr.Blocks() as demo: # history = gr.State([]) with gr.Row(): with gr.Column(): gr.Markdown( """ ChatLM is a chat Large Language model finetuned with pretrained [Falcon-1B model](https://huggingface.co/tiiuae/falcon-rw-1b). It was trained on a dataset containing normal day to day human conversations, due to limited data used in training it will not generalize well for tasks like coding, current affairs and hallucinations may occur. """ ) gr.Markdown(""" # Github Repo https://github.com/ayoolaolafenwa/ChatLM/tree/main """) chatbot = gr.Chatbot().style(height=400) with gr.Row(): with gr.Column(): msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box", show_label=False).style(container=False) with gr.Column(): with gr.Row(): submit = gr.Button("Run") stop = gr.Button("Stop") clear = gr.Button("Clear") system_msg = gr.Textbox( label="Response Message", interactive=False, visible=False) submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True) submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True) stop.click(fn=None, inputs=None, outputs=None, cancels=[ submit_event, submit_click_event], queue=False) clear.click(lambda: None, None, [chatbot], queue=False) demo.queue(max_size=32, concurrency_count=2) demo.launch()