|
from torch import nn |
|
import numpy as np |
|
from PIL import Image |
|
import gradio as gr |
|
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation |
|
|
|
def ade_palette(): |
|
"""ADE20K palette that maps each class to RGB values.""" |
|
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], |
|
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], |
|
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], |
|
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], |
|
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], |
|
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], |
|
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], |
|
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], |
|
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], |
|
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], |
|
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], |
|
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], |
|
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], |
|
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], |
|
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], |
|
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], |
|
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], |
|
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], |
|
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], |
|
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], |
|
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], |
|
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], |
|
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], |
|
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], |
|
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], |
|
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], |
|
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], |
|
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], |
|
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], |
|
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], |
|
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], |
|
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], |
|
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], |
|
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], |
|
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], |
|
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], |
|
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], |
|
[102, 255, 0], [92, 0, 255]] |
|
|
|
|
|
|
|
|
|
def run(img): |
|
extractor = AutoFeatureExtractor.from_pretrained("ayoubkirouane/Segments-Sidewalk-SegFormer-B0") |
|
model = SegformerForSemanticSegmentation.from_pretrained("ayoubkirouane/Segments-Sidewalk-SegFormer-B0") |
|
pixel_values = extractor(img, return_tensors="pt").pixel_values.to("cpu") |
|
outputs = model(pixel_values) |
|
logits = outputs.logits |
|
logits = nn.functional.interpolate(outputs.logits.detach().cpu(), |
|
size=img.size[::-1], |
|
mode='bilinear', |
|
align_corners=False) |
|
|
|
seg = logits.argmax(dim=1)[0] |
|
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) |
|
palette = np.array(ade_palette()) |
|
for label, color in enumerate(palette): |
|
color_seg[seg == label, :] = color |
|
|
|
color_seg = color_seg[..., ::-1] |
|
|
|
|
|
img = np.array(img) * 0.5 + color_seg * 0.5 |
|
img = img.astype(np.uint8) |
|
img = Image.fromarray(img) |
|
return img |
|
|
|
iface = gr.Interface( |
|
fn=run, |
|
inputs=gr.Image(label="Input image", type="pil"), |
|
examples=["1.png"] , |
|
outputs=gr.Image(label="Output image with predicted instance Masks", type="pil"), |
|
title="Image Segmentation with Segments-Sidewalk-SegFormer-B0", |
|
description="Upload an image, and this app will perform image segmentation and display the result", |
|
) |
|
|
|
|
|
iface.launch(debug=True) |