ayoubkirouane
commited on
Commit
•
8639a0a
1
Parent(s):
b34de28
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
|
6 |
+
|
7 |
+
def ade_palette():
|
8 |
+
"""ADE20K palette that maps each class to RGB values."""
|
9 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
10 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
11 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
12 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
13 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
14 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
15 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
16 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
17 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
18 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
19 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
20 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
21 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
22 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
23 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
24 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
25 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
26 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
27 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
28 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
29 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
30 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
31 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
32 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
33 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
34 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
35 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
36 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
37 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
38 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
39 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
40 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
41 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
42 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
43 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
44 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
45 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
46 |
+
[102, 255, 0], [92, 0, 255]]
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
def run(img):
|
52 |
+
extractor = AutoFeatureExtractor.from_pretrained("ayoubkirouane/Segments-Sidewalk-SegFormer-B0")
|
53 |
+
model = SegformerForSemanticSegmentation.from_pretrained("ayoubkirouane/Segments-Sidewalk-SegFormer-B0")
|
54 |
+
pixel_values = extractor(img, return_tensors="pt").pixel_values.to("cpu")
|
55 |
+
outputs = model(pixel_values)
|
56 |
+
logits = outputs.logits
|
57 |
+
logits = nn.functional.interpolate(outputs.logits.detach().cpu(),
|
58 |
+
size=img.size[::-1], # (height, width)
|
59 |
+
mode='bilinear',
|
60 |
+
align_corners=False)
|
61 |
+
# Second, apply argmax on the class dimension
|
62 |
+
seg = logits.argmax(dim=1)[0]
|
63 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
64 |
+
palette = np.array(ade_palette())
|
65 |
+
for label, color in enumerate(palette):
|
66 |
+
color_seg[seg == label, :] = color
|
67 |
+
# Convert to BGR
|
68 |
+
color_seg = color_seg[..., ::-1]
|
69 |
+
|
70 |
+
# Show image + mask
|
71 |
+
img = np.array(img) * 0.5 + color_seg * 0.5
|
72 |
+
img = img.astype(np.uint8)
|
73 |
+
img = Image.fromarray(img)
|
74 |
+
return img
|
75 |
+
# Create a Gradio interface
|
76 |
+
iface = gr.Interface(
|
77 |
+
fn=run,
|
78 |
+
inputs=gr.Image(label="Input image", type="pil"),
|
79 |
+
examples=["1.png"] ,
|
80 |
+
outputs=gr.Image(label="Output image with predicted instance Masks", type="pil"),
|
81 |
+
title="Image Segmentation with Segments-Sidewalk-SegFormer-B0",
|
82 |
+
description="Upload an image, and this app will perform image segmentation and display the result",
|
83 |
+
)
|
84 |
+
|
85 |
+
# Launch the app
|
86 |
+
iface.launch(share=True , debug=True)
|