ayymen's picture
Create app.py
2191500
raw
history blame
274 Bytes
import gradio as gr
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ber")
def predict(text):
return pipe(text)[0]["translation_text"]
demo = gr.Interface(
fn=predict,
inputs='text',
outputs='text',
)
demo.launch()