Chao Xu commited on
Commit
3c4eaa2
β€’
1 Parent(s): 1d24bdc

add badges, fix rerun bug, pruning

Browse files
Files changed (6) hide show
  1. README.md +1 -1
  2. app.py +37 -54
  3. pre-requirements.txt +6 -13
  4. requirements.txt +1 -6
  5. style.css +13 -0
  6. unsafe.png +3 -0
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: πŸ“ΈπŸš€πŸŒŸ
4
  colorFrom: red
5
  colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 3.36.1
8
  app_file: app.py
9
  pinned: true
10
  license: mit
 
4
  colorFrom: red
5
  colorTo: yellow
6
  sdk: gradio
7
+ sdk_version: 3.40.0
8
  app_file: app.py
9
  pinned: true
10
  license: mit
app.py CHANGED
@@ -31,7 +31,6 @@ import numpy as np
31
  import plotly.graph_objects as go
32
  from functools import partial
33
 
34
- from lovely_numpy import lo
35
  import cv2
36
  from PIL import Image
37
  import trimesh
@@ -46,16 +45,16 @@ _GPU_INDEX = 0
46
 
47
  _TITLE = '''One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization'''
48
 
 
 
49
  _DESCRIPTION = '''
 
 
 
 
 
50
  We reconstruct a 3D textured mesh from a single image by initially predicting multi-view images and then lifting them to 3D.
51
- [<a href="http://One-2-3-45.com">Project</a>]
52
- [<a href="https://github.com/One-2-3-45/One-2-3-45">GitHub</a>]
53
  '''
54
- # _HTML = '''<p>[<a href="https://github.com/One-2-3-45/One-2-3-45">GitHub</a>]
55
- # <object alt="GitHub Repo stars" src="https://img.shields.io/github/stars/One-2-3-45/One-2-3-45?style=social&link=https%3A%2F%2Fgithub.com%2FOne-2-3-45%2FOne-2-3-45">
56
- # </p>'''
57
- # _HTML = '<script async defer src="https://buttons.github.io/buttons.js"></script> <a class="github-button" href="https://github.com/One-2-3-45/One-2-3-45" data-icon="octicon-star" data-show-count="true" aria-label="Star One-2-3-45/One-2-3-45 on GitHub">Star</a><p>'
58
-
59
  _USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Run Generation**."
60
  _BBOX_1 = "Predicting bounding box for the input image..."
61
  _BBOX_2 = "Bounding box adjusted. Continue adjusting or **Run Generation**."
@@ -184,11 +183,6 @@ class CameraVisualizer:
184
  # Extract the new x, y, z coordinates from the rotated coordinates
185
  x, y, z = rotated_coordinates[..., 0], rotated_coordinates[..., 1], rotated_coordinates[..., 2]
186
 
187
-
188
- print('x:', lo(x))
189
- print('y:', lo(y))
190
- print('z:', lo(z))
191
-
192
  fig.add_trace(go.Surface(
193
  x=x, y=y, z=z,
194
  surfacecolor=self._8bit_image,
@@ -316,7 +310,12 @@ def stage1_run(models, device, cam_vis, tmp_dir,
316
  output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4)), device=device, ddim_steps=ddim_steps, scale=scale)
317
  stage2_steps = 50 # ddim_steps
318
  zero123_infer(model, tmp_dir, indices=[0], device=device, ddim_steps=stage2_steps, scale=scale)
319
- elev_output = estimate_elev(tmp_dir)
 
 
 
 
 
320
  gen_poses(tmp_dir, elev_output)
321
  show_in_im1 = np.asarray(input_im, dtype=np.uint8)
322
  cam_vis.encode_image(show_in_im1, elev=elev_output)
@@ -367,7 +366,7 @@ def stage2_run(models, device, tmp_dir,
367
  torch.cuda.empty_cache()
368
  os.chdir(os.path.join(code_dir, 'SparseNeuS_demo_v1/'))
369
 
370
- bash_script = f'CUDA_VISIBLE_DEVICES={_GPU_INDEX} python exp_runner_generic_blender_val.py --specific_dataset_name {dataset} --mode export_mesh --conf confs/one2345_lod0_val_demo.conf --is_continue'
371
  print(bash_script)
372
  os.system(bash_script)
373
  os.chdir(main_dir_path)
@@ -377,13 +376,9 @@ def stage2_run(models, device, tmp_dir,
377
  mesh_path = os.path.join(tmp_dir, f"mesh{mesh_ext}")
378
  # Read the textured mesh from .ply file
379
  mesh = trimesh.load_mesh(ply_path)
380
- axis = [1, 0, 0]
381
- angle = np.radians(90)
382
- rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
383
  mesh.apply_transform(rotation_matrix)
384
- axis = [0, 0, 1]
385
- angle = np.radians(180)
386
- rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
387
  mesh.apply_transform(rotation_matrix)
388
  # flip x
389
  mesh.vertices[:, 0] = -mesh.vertices[:, 0]
@@ -398,31 +393,16 @@ def stage2_run(models, device, tmp_dir,
398
  if not is_rerun:
399
  return (mesh_path)
400
  else:
401
- return (mesh_path, [], gr.update(visible=False), gr.update(visible=False))
402
 
403
  def nsfw_check(models, raw_im, device='cuda'):
404
  safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
405
  (_, has_nsfw_concept) = models['nsfw'](
406
  images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
407
- print('has_nsfw_concept:', has_nsfw_concept)
408
  del safety_checker_input
409
  if np.any(has_nsfw_concept):
410
  print('NSFW content detected.')
411
- # Define the image size and background color
412
- image_width = image_height = 256
413
- background_color = (255, 255, 255) # White
414
- # Create a blank image
415
- image = Image.new("RGB", (image_width, image_height), background_color)
416
- from PIL import ImageDraw
417
- draw = ImageDraw.Draw(image)
418
- text = "Potential NSFW content was detected."
419
- text_color = (255, 0, 0)
420
- text_position = (10, 123)
421
- draw.text(text_position, text, fill=text_color)
422
- text = "Please try again with a different image."
423
- text_position = (10, 133)
424
- draw.text(text_position, text, fill=text_color)
425
- return image
426
  else:
427
  print('Safety check passed.')
428
  return False
@@ -439,7 +419,7 @@ def preprocess_run(predictor, models, raw_im, preprocess, *bbox_sliders):
439
 
440
  def on_coords_slider(image, x_min, y_min, x_max, y_max, color=(88, 191, 131, 255)):
441
  """Draw a bounding box annotation for an image."""
442
- print("on_coords_slider, drawing bbox...")
443
  image.thumbnail([512, 512], Image.Resampling.LANCZOS)
444
  image_size = image.size
445
  if max(image_size) > 224:
@@ -502,15 +482,18 @@ def run_demo(
502
  examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
503
 
504
  # Compose demo layout & data flow.
505
- css = "#model-3d-out {height: 400px;} #plot-out {height: 450px;}"
506
- with gr.Blocks(title=_TITLE, css=css) as demo:
507
- gr.Markdown('# ' + _TITLE)
 
 
 
 
508
  gr.Markdown(_DESCRIPTION)
509
- # gr.HTML(_HTML)
510
 
511
  with gr.Row(variant='panel'):
512
  with gr.Column(scale=1.2):
513
- image_block = gr.Image(type='pil', image_mode='RGBA', label='Input image', tool=None).style(height=290)
514
 
515
  gr.Examples(
516
  examples=examples_full, # NOTE: elements must match inputs list!
@@ -535,7 +518,7 @@ def run_demo(
535
 
536
  with gr.Column(scale=.8):
537
  with gr.Row():
538
- bbox_block = gr.Image(type='pil', label="Bounding box", interactive=False).style(height=290)
539
  sam_block = gr.Image(type='pil', label="SAM output", interactive=False)
540
  max_width = max_height = 256
541
  with gr.Row():
@@ -556,20 +539,20 @@ def run_demo(
556
  with gr.Column(scale=1.15):
557
  gr.Markdown('Predicted multi-view images')
558
  with gr.Row():
559
- view_1 = gr.Image(interactive=False, show_label=False).style(height=200)
560
- view_2 = gr.Image(interactive=False, show_label=False).style(height=200)
561
- view_3 = gr.Image(interactive=False, show_label=False).style(height=200)
562
- view_4 = gr.Image(interactive=False, show_label=False).style(height=200)
563
  with gr.Row():
564
  btn_retry_1 = gr.Checkbox(label='Retry view 1')
565
  btn_retry_2 = gr.Checkbox(label='Retry view 2')
566
  btn_retry_3 = gr.Checkbox(label='Retry view 3')
567
  btn_retry_4 = gr.Checkbox(label='Retry view 4')
568
  with gr.Row():
569
- view_5 = gr.Image(interactive=False, show_label=False).style(height=200)
570
- view_6 = gr.Image(interactive=False, show_label=False).style(height=200)
571
- view_7 = gr.Image(interactive=False, show_label=False).style(height=200)
572
- view_8 = gr.Image(interactive=False, show_label=False).style(height=200)
573
  with gr.Row():
574
  btn_retry_5 = gr.Checkbox(label='Retry view 5')
575
  btn_retry_6 = gr.Checkbox(label='Retry view 6')
@@ -663,7 +646,7 @@ def run_demo(
663
  ).success(fn=partial(update_guide, _REGEN_2), outputs=[guide_text], queue=False)
664
 
665
 
666
- demo.launch(enable_queue=True, share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
667
 
668
 
669
  if __name__ == '__main__':
 
31
  import plotly.graph_objects as go
32
  from functools import partial
33
 
 
34
  import cv2
35
  from PIL import Image
36
  import trimesh
 
45
 
46
  _TITLE = '''One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization'''
47
 
48
+
49
+ # <a style="display:inline-block; margin-left: 1em" href="https://arxiv.org/abs/2306.16928"><img src="https://img.shields.io/badge/arXiv-2306.16928-b31b1b.svg"></a>
50
  _DESCRIPTION = '''
51
+ <div>
52
+ <a style="display:inline-block" href="http://one-2-3-45.com"><img src="https://img.shields.io/badge/Project_Homepage-f9f7f7?logo="></a>
53
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2306.16928"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a>
54
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/One-2-3-45/One-2-3-45'><img src='https://img.shields.io/github/stars/One-2-3-45/One-2-3-45?style=social' /></a>
55
+ </div>
56
  We reconstruct a 3D textured mesh from a single image by initially predicting multi-view images and then lifting them to 3D.
 
 
57
  '''
 
 
 
 
 
58
  _USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Run Generation**."
59
  _BBOX_1 = "Predicting bounding box for the input image..."
60
  _BBOX_2 = "Bounding box adjusted. Continue adjusting or **Run Generation**."
 
183
  # Extract the new x, y, z coordinates from the rotated coordinates
184
  x, y, z = rotated_coordinates[..., 0], rotated_coordinates[..., 1], rotated_coordinates[..., 2]
185
 
 
 
 
 
 
186
  fig.add_trace(go.Surface(
187
  x=x, y=y, z=z,
188
  surfacecolor=self._8bit_image,
 
310
  output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4)), device=device, ddim_steps=ddim_steps, scale=scale)
311
  stage2_steps = 50 # ddim_steps
312
  zero123_infer(model, tmp_dir, indices=[0], device=device, ddim_steps=stage2_steps, scale=scale)
313
+ try:
314
+ elev_output = estimate_elev(tmp_dir)
315
+ except:
316
+ print("Failed to estimate polar angle")
317
+ elev_output = 90
318
+ print("Estimated polar angle:", elev_output)
319
  gen_poses(tmp_dir, elev_output)
320
  show_in_im1 = np.asarray(input_im, dtype=np.uint8)
321
  cam_vis.encode_image(show_in_im1, elev=elev_output)
 
366
  torch.cuda.empty_cache()
367
  os.chdir(os.path.join(code_dir, 'SparseNeuS_demo_v1/'))
368
 
369
+ bash_script = f'CUDA_VISIBLE_DEVICES={_GPU_INDEX} python exp_runner_generic_blender_val.py --specific_dataset_name {dataset} --mode export_mesh --conf confs/one2345_lod0_val_demo.conf'
370
  print(bash_script)
371
  os.system(bash_script)
372
  os.chdir(main_dir_path)
 
376
  mesh_path = os.path.join(tmp_dir, f"mesh{mesh_ext}")
377
  # Read the textured mesh from .ply file
378
  mesh = trimesh.load_mesh(ply_path)
379
+ rotation_matrix = trimesh.transformations.rotation_matrix(np.pi/2, [1, 0, 0])
 
 
380
  mesh.apply_transform(rotation_matrix)
381
+ rotation_matrix = trimesh.transformations.rotation_matrix(np.pi, [0, 0, 1])
 
 
382
  mesh.apply_transform(rotation_matrix)
383
  # flip x
384
  mesh.vertices[:, 0] = -mesh.vertices[:, 0]
 
393
  if not is_rerun:
394
  return (mesh_path)
395
  else:
396
+ return (mesh_path, gr.update(value=[]), gr.update(visible=False), gr.update(visible=False))
397
 
398
  def nsfw_check(models, raw_im, device='cuda'):
399
  safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
400
  (_, has_nsfw_concept) = models['nsfw'](
401
  images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
 
402
  del safety_checker_input
403
  if np.any(has_nsfw_concept):
404
  print('NSFW content detected.')
405
+ return Image.open("unsafe.png")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406
  else:
407
  print('Safety check passed.')
408
  return False
 
419
 
420
  def on_coords_slider(image, x_min, y_min, x_max, y_max, color=(88, 191, 131, 255)):
421
  """Draw a bounding box annotation for an image."""
422
+ print("Slider adjusted, drawing bbox...")
423
  image.thumbnail([512, 512], Image.Resampling.LANCZOS)
424
  image_size = image.size
425
  if max(image_size) > 224:
 
482
  examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
483
 
484
  # Compose demo layout & data flow.
485
+ with gr.Blocks(title=_TITLE, css="style.css") as demo:
486
+ with gr.Row():
487
+ with gr.Column(scale=1):
488
+ gr.Markdown('# ' + _TITLE)
489
+ with gr.Column(scale=0):
490
+ gr.DuplicateButton(value='Duplicate Space for private use',
491
+ elem_id='duplicate-button')
492
  gr.Markdown(_DESCRIPTION)
 
493
 
494
  with gr.Row(variant='panel'):
495
  with gr.Column(scale=1.2):
496
+ image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None)
497
 
498
  gr.Examples(
499
  examples=examples_full, # NOTE: elements must match inputs list!
 
518
 
519
  with gr.Column(scale=.8):
520
  with gr.Row():
521
+ bbox_block = gr.Image(type='pil', label="Bounding box", height=290, interactive=False)
522
  sam_block = gr.Image(type='pil', label="SAM output", interactive=False)
523
  max_width = max_height = 256
524
  with gr.Row():
 
539
  with gr.Column(scale=1.15):
540
  gr.Markdown('Predicted multi-view images')
541
  with gr.Row():
542
+ view_1 = gr.Image(interactive=False, height=200, show_label=False)
543
+ view_2 = gr.Image(interactive=False, height=200, show_label=False)
544
+ view_3 = gr.Image(interactive=False, height=200, show_label=False)
545
+ view_4 = gr.Image(interactive=False, height=200, show_label=False)
546
  with gr.Row():
547
  btn_retry_1 = gr.Checkbox(label='Retry view 1')
548
  btn_retry_2 = gr.Checkbox(label='Retry view 2')
549
  btn_retry_3 = gr.Checkbox(label='Retry view 3')
550
  btn_retry_4 = gr.Checkbox(label='Retry view 4')
551
  with gr.Row():
552
+ view_5 = gr.Image(interactive=False, height=200, show_label=False)
553
+ view_6 = gr.Image(interactive=False, height=200, show_label=False)
554
+ view_7 = gr.Image(interactive=False, height=200, show_label=False)
555
+ view_8 = gr.Image(interactive=False, height=200, show_label=False)
556
  with gr.Row():
557
  btn_retry_5 = gr.Checkbox(label='Retry view 5')
558
  btn_retry_6 = gr.Checkbox(label='Retry view 6')
 
646
  ).success(fn=partial(update_guide, _REGEN_2), outputs=[guide_text], queue=False)
647
 
648
 
649
+ demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
650
 
651
 
652
  if __name__ == '__main__':
pre-requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
- # --extra-index-url https://download.pytorch.org/whl/cu113
2
- torch>=1.12.1
3
  torchvision>=0.13.1
4
  albumentations>=0.4.3
5
  opencv-python>=4.5.5.64
@@ -22,8 +22,6 @@ diffusers>=0.12.1
22
  datasets[vision]>=2.4.0
23
  carvekit-colab>=4.1.0
24
  rich>=13.3.2
25
- lovely-numpy>=0.2.8
26
- lovely-tensors>=0.1.14
27
  plotly>=5.13.1
28
  -e git+https://github.com/CompVis/taming-transformers.git#egg=taming-transformers
29
  # elev est
@@ -32,7 +30,6 @@ easydict
32
  glumpy
33
  gym
34
  h5py
35
- imageio
36
  loguru
37
  matplotlib
38
  # mplib
@@ -55,18 +52,14 @@ tqdm
55
  transforms3d
56
  trimesh
57
  yacs
58
- zarr
59
- sapien
60
  pyglet==1.5.27
61
- wis3d
62
  gdown
63
  git+https://github.com/NVlabs/nvdiffrast.git
64
- # shap-e
65
- git+https://github.com/openai/shap-e@8625e7c
66
  # segment anything
67
- opencv-python
68
- pycocotools
69
- matplotlib
70
  onnxruntime
71
  onnx
72
  git+https://github.com/facebookresearch/segment-anything.git
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu118
2
+ torch>=2.0.0
3
  torchvision>=0.13.1
4
  albumentations>=0.4.3
5
  opencv-python>=4.5.5.64
 
22
  datasets[vision]>=2.4.0
23
  carvekit-colab>=4.1.0
24
  rich>=13.3.2
 
 
25
  plotly>=5.13.1
26
  -e git+https://github.com/CompVis/taming-transformers.git#egg=taming-transformers
27
  # elev est
 
30
  glumpy
31
  gym
32
  h5py
 
33
  loguru
34
  matplotlib
35
  # mplib
 
52
  transforms3d
53
  trimesh
54
  yacs
55
+ # zarr
56
+ # sapien
57
  pyglet==1.5.27
58
+ # wis3d
59
  gdown
60
  git+https://github.com/NVlabs/nvdiffrast.git
61
+ git+https://github.com/openai/CLIP.git
 
62
  # segment anything
 
 
 
63
  onnxruntime
64
  onnx
65
  git+https://github.com/facebookresearch/segment-anything.git
requirements.txt CHANGED
@@ -1,12 +1,7 @@
1
  # sparseneus
2
  # -e git+https://github.com/mit-han-lab/[email protected]#egg=torchsparse
3
- opencv_python
4
- trimesh
5
  numpy
6
  pyhocon
7
  icecream
8
- tqdm
9
- scipy
10
  PyMCubes
11
- ninja
12
- # sudo apt-get install libsparsehash-dev
 
1
  # sparseneus
2
  # -e git+https://github.com/mit-han-lab/[email protected]#egg=torchsparse
 
 
3
  numpy
4
  pyhocon
5
  icecream
 
 
6
  PyMCubes
7
+ ninja
 
style.css ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model-3d-out {
2
+ height: 400px;
3
+ }
4
+
5
+ #plot-out {
6
+ height: 450px;
7
+ }
8
+
9
+ #duplicate-button {
10
+ margin-left: auto;
11
+ color: #fff;
12
+ background: #1565c0;
13
+ }
unsafe.png ADDED

Git LFS Details

  • SHA256: e34e0242a55665673d981115beeff72e6583d4c23143eb5bccbc0b73e162760d
  • Pointer size: 130 Bytes
  • Size of remote file: 29.6 kB