Spaces:
Build error
Build error
File size: 8,645 Bytes
f4c516d 0648ca5 f4c516d 0648ca5 f4c516d 0648ca5 f4c516d 0648ca5 f4c516d 0648ca5 f4c516d 0648ca5 f4c516d 0648ca5 f4c516d 08161c3 f4c516d 2860157 f4c516d 08161c3 f4c516d de2f578 f4c516d de2f578 0648ca5 de2f578 2860157 17c78a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import streamlit as st
import PIL
import numpy as np
import torch
from collections import defaultdict
import cv2
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from doctr.utils.visualization import visualize_page
import pytesseract
from pytesseract import Output
from bs4 import BeautifulSoup as bs
import sys, json
import postprocess
ocr_predictor = ocr_predictor('db_resnet50', 'crnn_vgg16_bn', pretrained=True)
structure_model = torch.hub.load('ultralytics/yolov5', 'custom', 'weights/structure_wts.pt', force_reload=True)
imgsz = 640
structure_class_names = [
'table', 'table column', 'table row', 'table column header',
'table projected row header', 'table spanning cell', 'no object'
]
structure_class_map = {k: v for v, k in enumerate(structure_class_names)}
structure_class_thresholds = {
"table": 0.5,
"table column": 0.5,
"table row": 0.5,
"table column header": 0.25,
"table projected row header": 0.25,
"table spanning cell": 0.25,
"no object": 10
}
def PIL_to_cv(pil_img):
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
def cv_to_PIL(cv_img):
return PIL.Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
def table_structure(filename):
pil_img = PIL.Image.open(filename)
image = PIL_to_cv(pil_img)
pred = structure_model(image, size=imgsz)
pred = pred.xywhn[0]
result = pred.cpu().numpy()
return result
def ocr(filename):
doc = DocumentFile.from_images(filename.read())
result = ocr_predictor(doc).export()
result = result['pages'][0]
H, W = result['dimensions']
ocr_res = []
for block in result['blocks']:
for line in block['lines']:
for word in line['words']:
bbox = word['geometry']
word_info = {
'bbox': [int(bbox[0][0] * W), int(bbox[0][1] * H), int(bbox[1][0] * W), int(bbox[1][1] * H)],
'text': word['value']
}
ocr_res.append(word_info)
return ocr_res
def convert_stucture(page_tokens, filename, structure_result):
pil_img = PIL.Image.open(filename)
image = PIL_to_cv(pil_img)
width = image.shape[1]
height = image.shape[0]
# print(width, height)
bboxes = []
scores = []
labels = []
for i, result in enumerate(structure_result):
class_id = int(result[5])
score = float(result[4])
min_x = result[0]
min_y = result[1]
w = result[2]
h = result[3]
x1 = int((min_x-w/2)*width)
y1 = int((min_y-h/2)*height)
x2 = int((min_x+w/2)*width)
y2 = int((min_y+h/2)*height)
# print(x1, y1, x2, y2)
bboxes.append([x1, y1, x2, y2])
scores.append(score)
labels.append(class_id)
table_objects = []
for bbox, score, label in zip(bboxes, scores, labels):
table_objects.append({'bbox': bbox, 'score': score, 'label': label})
# print('table_objects:', table_objects)
table = {'objects': table_objects, 'page_num': 0}
table_class_objects = [obj for obj in table_objects if obj['label'] == structure_class_map['table']]
if len(table_class_objects) > 1:
table_class_objects = sorted(table_class_objects, key=lambda x: x['score'], reverse=True)
try:
table_bbox = list(table_class_objects[0]['bbox'])
except:
table_bbox = (0,0,1000,1000)
# print('table_class_objects:', table_class_objects)
# print('table_bbox:', table_bbox)
tokens_in_table = [token for token in page_tokens if postprocess.iob(token['bbox'], table_bbox) >= 0.5]
# print('tokens_in_table:', tokens_in_table)
table_structures, cells, confidence_score = postprocess.objects_to_cells(table, table_objects, tokens_in_table, structure_class_names, structure_class_thresholds)
return table_structures, cells, confidence_score
def visualize_cells(filename, cells, ax):
pil_img = PIL.Image.open(filename)
image = PIL_to_cv(pil_img)
for i, cell in enumerate(cells):
bbox = cell['bbox']
x1 = int(bbox[0])
y1 = int(bbox[1])
x2 = int(bbox[2])
y2 = int(bbox[3])
cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 255, 0))
ax.image(cv_to_PIL(image))
def pytess(cell_pil_img):
return ' '.join(pytesseract.image_to_data(cell_pil_img, output_type=Output.DICT, config='-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --tessdata-dir tessdata --oem 3 --psm 6')['text']).strip()
def resize(pil_img, size=1800):
length_x, width_y = pil_img.size
factor = max(1, size / length_x)
size = int(factor * length_x), int(factor * width_y)
pil_img = pil_img.resize(size, PIL.Image.ANTIALIAS)
return pil_img, factor
def image_smoothening(img):
ret1, th1 = cv2.threshold(img, 180, 255, cv2.THRESH_BINARY)
ret2, th2 = cv2.threshold(th1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
blur = cv2.GaussianBlur(th2, (1, 1), 0)
ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return th3
def remove_noise_and_smooth(pil_img):
img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2GRAY)
filtered = cv2.adaptiveThreshold(img.astype(np.uint8), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 41, 3)
kernel = np.ones((1, 1), np.uint8)
opening = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)
img = image_smoothening(img)
or_image = cv2.bitwise_or(img, closing)
pil_img = PIL.Image.fromarray(or_image)
return pil_img
def extract_text_from_cells(filename, cells):
pil_img = PIL.Image.open(filename)
pil_img, factor = resize(pil_img)
#pil_img = remove_noise_and_smooth(pil_img)
#display(pil_img)
for cell in cells:
bbox = [x * factor for x in cell['bbox']]
cell_pil_img = pil_img.crop(bbox)
#cell_pil_img = remove_noise_and_smooth(cell_pil_img)
#cell_pil_img = tess_prep(cell_pil_img)
cell['text'] = pytess(cell_pil_img)
return cells
def cells_to_html(cells):
for cell in cells:
cell['column_nums'].sort()
cell['row_nums'].sort()
n_cols = max(cell['column_nums'][-1] for cell in cells) + 1
n_rows = max(cell['row_nums'][-1] for cell in cells) + 1
html_code = ''
for r in range(n_rows):
r_cells = [cell for cell in cells if cell['row_nums'][0] == r]
r_cells.sort(key=lambda x: x['column_nums'][0])
r_html = ''
for cell in r_cells:
rowspan = cell['row_nums'][-1] - cell['row_nums'][0] + 1
colspan = cell['column_nums'][-1] - cell['column_nums'][0] + 1
r_html += f'<td rowspan="{rowspan}" colspan="{colspan}">{cell["text"]}</td>'
html_code += f'<tr>{r_html}</tr>'
html_code = '''<html>
<head>
<meta charset="UTF-8">
<style>
table, th, td {
border: 1px solid black;
font-size: 10px;
}
</style>
</head>
<body>
<table frame="hsides" rules="groups" width="100%%">
%s
</table>
</body>
</html>''' % html_code
soup = bs(html_code)
html_code = soup.prettify()
return html_code
def main():
st.set_page_config(layout="wide")
st.title("Table Structure Recognition Demo")
st.write('\n')
cols = st.columns((1, 1))
cols[0].subheader("Input page")
cols[1].subheader("Structure output")
st.sidebar.title("Image upload")
st.set_option('deprecation.showfileUploaderEncoding', False)
filename = st.sidebar.file_uploader("Upload files", type=['png', 'jpeg', 'jpg'])
if st.sidebar.button("Analyze image"):
if filename is None:
st.sidebar.write("Please upload an image")
else:
print(filename)
cols[0].image(filename)
ocr_res = ocr(filename)
structure_result = table_structure(filename)
table_structures, cells, confidence_score = convert_stucture(ocr_res, filename, structure_result)
visualize_cells(filename, cells, cols[1])
cells = extract_text_from_cells(filename, cells)
html_code = cells_to_html(cells)
st.markdown("\nHTML output:")
st.markdown(html_code, unsafe_allow_html=True)
if __name__ == '__main__':
main()
|