Spaces:
Build error
Build error
File size: 23,915 Bytes
f4c516d ba538d2 f4c516d ba538d2 f4c516d b310dda 2a27a15 ba538d2 b310dda 2a27a15 c9a4627 2a27a15 ba538d2 b310dda ddd0768 f4c516d 57c5b14 c9a52b3 6a2b711 c9a52b3 6a2b711 c9a52b3 6a2b711 c9a52b3 b310dda 6a2b711 c9a52b3 f4c516d aaffb60 f4c516d aaffb60 f4c516d aaffb60 f4c516d fff539b f4c516d 0648ca5 ba538d2 0648ca5 6a2b711 ba538d2 6b58b11 ba538d2 6a2b711 0648ca5 f4c516d 0648ca5 6b58b11 f4c516d fff539b ba538d2 65b03fb ba538d2 aaffb60 be7e0a8 ba538d2 2a27a15 fff539b be7e0a8 2a27a15 aaffb60 2a27a15 ba538d2 2a27a15 65b03fb fff539b c59b7a8 3479c98 ba538d2 f4c516d ba538d2 f4c516d ba538d2 0648ca5 f4c516d ba538d2 f4c516d 65b03fb f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d 17ae8b6 f4c516d ba538d2 da7228c 6b58b11 f4c516d ba538d2 f4c516d ba538d2 f4c516d aaffb60 ba538d2 aaffb60 65b03fb aaffb60 65b03fb aaffb60 188eda0 aaffb60 ba538d2 2a27a15 ba538d2 2a27a15 c9a4627 2a27a15 65b03fb ba538d2 17ae8b6 aaffb60 ba538d2 2a27a15 17ae8b6 aaffb60 65b03fb aaffb60 2a27a15 c9a4627 aaffb60 c9a4627 45b51fc c9a4627 188eda0 c9a4627 2a27a15 c9a4627 2a27a15 ba538d2 65b03fb c9a4627 2a27a15 c9a4627 f4c516d c9a4627 a4d6532 c9a4627 2a27a15 c9a4627 a4d6532 c9a4627 2a27a15 c9a4627 2a27a15 c9a4627 2a27a15 c9a4627 2a27a15 c9a4627 2a27a15 c9a4627 2a27a15 f4c516d b310dda f4c516d b310dda f4c516d b310dda f4c516d b310dda f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 17ae8b6 ba538d2 17ae8b6 ba538d2 f4c516d ba538d2 17ae8b6 ba538d2 08161c3 ba538d2 17ae8b6 c58ad4a ba538d2 17ae8b6 ba538d2 17ae8b6 ba538d2 17ae8b6 ba538d2 17ae8b6 ba538d2 17ae8b6 ba538d2 f4c516d b310dda aaffb60 b310dda f4c516d 45b51fc 17ae8b6 f4c516d d29eac7 ed1be35 f4c516d de2f578 d29eac7 f4c516d de2f578 0566252 b310dda 0566252 de2f578 ba538d2 ed1be35 b310dda ed1be35 b310dda ed1be35 b310dda aaffb60 ed1be35 65b03fb aaffb60 ed1be35 aaffb60 ed1be35 aaffb60 ed1be35 aaffb60 17c78a6 b310dda aaffb60 17c78a6 188eda0 17c78a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
import streamlit as st
import PIL
import cv2
import numpy as np
import pandas as pd
import torch
import os
import io
# import sys
# import json
from collections import OrderedDict, defaultdict
import xml.etree.ElementTree as ET
from tempfile import TemporaryDirectory
import xlsxwriter
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.patches import Patch
from paddleocr import PaddleOCR
# import pytesseract
# from pytesseract import Output
from fitz import Rect
import postprocess
st.set_page_config(page_title='Table Extraction Demo', layout='wide')
@st.experimental_singleton(ttl=3600)
def load_ocr_instance():
ocr_instance = PaddleOCR(use_angle_cls=False, lang='en', use_gpu=True)
return ocr_instance
@st.experimental_singleton(ttl=3600)
def load_detection_model():
detection_model = torch.hub.load('ultralytics/yolov5', 'custom', 'weights/detection_wts.pt', force_reload=True, skip_validation=True, trust_repo=True)
return detection_model
@st.experimental_singleton(ttl=3600)
def load_structure_model():
structure_model = torch.hub.load('ultralytics/yolov5', 'custom', 'weights/structure_wts.pt', force_reload=True, skip_validation=True, trust_repo=True)
return structure_model
ocr_instance, detection_model, structure_model = load_ocr_instance(), load_detection_model(), load_structure_model()
detection_class_names = ['table', 'table rotated', 'no object']
structure_class_names = [
'table', 'table column', 'table row', 'table column header',
'table projected row header', 'table spanning cell', 'no object'
]
detection_class_map = {k: v for v, k in enumerate(detection_class_names)}
structure_class_map = {k: v for v, k in enumerate(structure_class_names)}
detection_class_thresholds = {
'table': 0.5,
'table rotated': 0.5,
'no object': 10
}
structure_class_thresholds = {
"table": 0.45,
"table column": 0.6,
"table row": 0.5,
"table column header": 0.4,
"table projected row header": 0.3,
"table spanning cell": 0.5,
"no object": 10
}
def PIL_to_cv(pil_img):
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
def cv_to_PIL(cv_img):
return PIL.Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
def table_detection(pil_img, imgsz=640):
image = PIL_to_cv(pil_img)
pred = detection_model(image, size=imgsz)
pred = pred.xywhn[0]
result = pred.detach().cpu().numpy()
return result
def table_structure(pil_img, imgsz=640):
image = PIL_to_cv(pil_img)
pred = structure_model(image, size=imgsz)
pred = pred.xywhn[0]
result = pred.detach().cpu().numpy()
return result
def crop_image(pil_img, detection_result):
crop_images = []
image = PIL_to_cv(pil_img)
width = image.shape[1]
height = image.shape[0]
# print(width, height)
for idx, result in enumerate(detection_result):
class_id = int(result[5])
score = float(result[4])
min_x = result[0]
min_y = result[1]
w = result[2]
h = result[3]
if score < detection_class_thresholds[detection_class_names[class_id]]:
continue
x1 = int((min_x - w / 2) * width)
y1 = int((min_y - h / 2) * height)
x2 = int((min_x + w / 2) * width)
y2 = int((min_y + h / 2) * height)
# print(x1, y1, x2, y2)
padding_x = max(int(0.02 * width), 30)
padding_y = max(int(0.02 * height), 30)
x1_pad = max(0, x1 - padding_x)
y1_pad = max(0, y1 - padding_y)
x2_pad = min(width, x2 + padding_x)
y2_pad = min(height, y2 + padding_y)
crop_image = image[y1_pad:y2_pad, x1_pad:x2_pad, :]
crop_image = cv_to_PIL(crop_image)
if detection_class_names[class_id] == 'table rotated':
crop_image = crop_image.rotate(270, expand=True)
crop_images.append(crop_image)
cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 0, 255), thickness=2)
label = f'{detection_class_names[class_id]} {score:.2f}'
lw = max(round(sum(image.shape) / 2 * 0.003), 2)
fontScale = lw / 3
thickness = max(lw - 1, 1)
w_label, h_label = cv2.getTextSize(label, 0, fontScale=fontScale, thickness=thickness)[0]
cv2.rectangle(image, (x1, y1), (x1 + w_label, y1 - h_label - 3), (0, 0, 255), -1, cv2.LINE_AA)
cv2.putText(image, label, (x1, y1 - 2), cv2.FONT_HERSHEY_SIMPLEX, fontScale, (255, 255, 255), thickness=thickness, lineType=cv2.LINE_AA)
return crop_images, cv_to_PIL(image)
def ocr(pil_img):
image = PIL_to_cv(pil_img)
result = ocr_instance.ocr(image)
ocr_res = []
for ps, (text, score) in result[0]:
x1 = min(p[0] for p in ps)
y1 = min(p[1] for p in ps)
x2 = max(p[0] for p in ps)
y2 = max(p[1] for p in ps)
word_info = {
'bbox': [x1, y1, x2, y2],
'text': text
}
ocr_res.append(word_info)
return ocr_res
def convert_stucture(page_tokens, pil_img, structure_result):
image = PIL_to_cv(pil_img)
width = image.shape[1]
height = image.shape[0]
# print(width, height)
bboxes = []
scores = []
labels = []
for idx, result in enumerate(structure_result):
class_id = int(result[5])
score = float(result[4])
min_x = result[0]
min_y = result[1]
w = result[2]
h = result[3]
x1 = int((min_x - w / 2) * width)
y1 = int((min_y - h / 2) * height)
x2 = int((min_x + w / 2) * width)
y2 = int((min_y + h / 2) * height)
# print(x1, y1, x2, y2)
bboxes.append([x1, y1, x2, y2])
scores.append(score)
labels.append(class_id)
table_objects = []
for bbox, score, label in zip(bboxes, scores, labels):
table_objects.append({'bbox': bbox, 'score': score, 'label': label})
# print('table_objects:', table_objects)
table = {'objects': table_objects, 'page_num': 0}
table_class_objects = [obj for obj in table_objects if obj['label'] == structure_class_map['table']]
if len(table_class_objects) > 1:
table_class_objects = sorted(table_class_objects, key=lambda x: x['score'], reverse=True)
try:
table_bbox = list(table_class_objects[0]['bbox'])
except:
table_bbox = (0, 0, 1000, 1000)
# print('table_class_objects:', table_class_objects)
# print('table_bbox:', table_bbox)
tmp = Rect(table_bbox)
for obj in table_objects:
if structure_class_names[obj['label']] in ('table column', 'table row'):
if postprocess.iob(obj['bbox'], table_bbox) >= 0.001:
tmp.include_rect(obj['bbox'])
table_bbox = (tmp[0], tmp[1], tmp[2], tmp[3])
tokens_in_table = [token for token in page_tokens if postprocess.iob(token['bbox'], table_bbox) >= 0.001]
# print('tokens_in_table:', tokens_in_table)
table_structures, cells, confidence_score = postprocess.objects_to_cells(table, table_objects, tokens_in_table, structure_class_names, structure_class_thresholds)
return table_structures, cells, confidence_score
def visualize_image(pil_img):
plt.imshow(pil_img, interpolation='lanczos')
plt.gcf().set_size_inches(10, 10)
plt.axis('off')
img_buf = io.BytesIO()
plt.savefig(img_buf, bbox_inches='tight', dpi=150)
plt.close()
return PIL.Image.open(img_buf)
def visualize_ocr(pil_img, ocr_result):
plt.imshow(pil_img, interpolation='lanczos')
plt.gcf().set_size_inches(20, 20)
ax = plt.gca()
for idx, result in enumerate(ocr_result):
bbox = result['bbox']
text = result['text']
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=2, edgecolor='red', facecolor='none', linestyle='-')
ax.add_patch(rect)
ax.text(bbox[0], bbox[1], text, horizontalalignment='left', verticalalignment='bottom', color='blue', fontsize=7)
plt.xticks([], [])
plt.yticks([], [])
plt.gcf().set_size_inches(10, 10)
plt.axis('off')
img_buf = io.BytesIO()
plt.savefig(img_buf, bbox_inches='tight', dpi=150)
plt.close()
return PIL.Image.open(img_buf)
def get_bbox_decorations(data_type, label):
if label == 0:
if data_type == 'detection':
return 'brown', 0.05, 3, '//'
else:
return 'brown', 0, 3, None
elif label == 1:
return 'red', 0.15, 2, None
elif label == 2:
return 'blue', 0.15, 2, None
elif label == 3:
return 'magenta', 0.2, 3, '//'
elif label == 4:
return 'cyan', 0.2, 4, '//'
elif label == 5:
return 'green', 0.2, 4, '\\\\'
return 'gray', 0, 0, None
def visualize_structure(pil_img, structure_result):
image = PIL_to_cv(pil_img)
width = image.shape[1]
height = image.shape[0]
# print(width, height)
plt.imshow(pil_img, interpolation='lanczos')
plt.gcf().set_size_inches(20, 20)
ax = plt.gca()
for idx, result in enumerate(structure_result):
class_id = int(result[5])
score = float(result[4])
min_x = result[0]
min_y = result[1]
w = result[2]
h = result[3]
if score < structure_class_thresholds[structure_class_names[class_id]]:
continue
x1 = int((min_x - w / 2) * width)
y1 = int((min_y - h / 2) * height)
x2 = int((min_x + w / 2) * width)
y2 = int((min_y + h / 2) * height)
# print(x1, y1, x2, y2)
bbox = [x1, y1, x2, y2]
color, alpha, linewidth, hatch = get_bbox_decorations('recognition', class_id)
# Fill
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1],
linewidth=linewidth, alpha=alpha,
edgecolor='none',facecolor=color,
linestyle=None)
ax.add_patch(rect)
# Hatch
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1],
linewidth=1, alpha=0.4,
edgecolor=color, facecolor='none',
linestyle='--',hatch=hatch)
ax.add_patch(rect)
# Edge
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1],
linewidth=linewidth,
edgecolor=color, facecolor='none',
linestyle='--')
ax.add_patch(rect)
plt.xticks([], [])
plt.yticks([], [])
legend_elements = []
for class_name in structure_class_names[:-1]:
color, alpha, linewidth, hatch = get_bbox_decorations('recognition', structure_class_map[class_name])
legend_elements.append(
Patch(facecolor='none', edgecolor=color, linestyle='--', label=class_name, hatch=hatch)
)
plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0,
fontsize=10, ncol=3)
plt.gcf().set_size_inches(10, 10)
plt.axis('off')
img_buf = io.BytesIO()
plt.savefig(img_buf, bbox_inches='tight', dpi=150)
plt.close()
return PIL.Image.open(img_buf)
def visualize_cells(pil_img, cells):
plt.imshow(pil_img, interpolation='lanczos')
plt.gcf().set_size_inches(20, 20)
ax = plt.gca()
for cell in cells:
bbox = cell['bbox']
if cell['header']:
facecolor = (1, 0, 0.45)
edgecolor = (1, 0, 0.45)
alpha = 0.3
linewidth = 2
hatch='//////'
elif cell['subheader']:
facecolor = (0.95, 0.6, 0.1)
edgecolor = (0.95, 0.6, 0.1)
alpha = 0.3
linewidth = 2
hatch='//////'
else:
facecolor = (0.3, 0.74, 0.8)
edgecolor = (0.3, 0.7, 0.6)
alpha = 0.3
linewidth = 2
hatch='\\\\\\\\\\\\'
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
edgecolor='none',facecolor=facecolor, alpha=0.1)
ax.add_patch(rect)
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha)
ax.add_patch(rect)
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0,
edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2)
ax.add_patch(rect)
plt.xticks([], [])
plt.yticks([], [])
legend_elements = [Patch(facecolor=(0.3, 0.74, 0.8), edgecolor=(0.3, 0.7, 0.6),
label='Data cell', hatch='\\\\\\\\\\\\', alpha=0.3),
Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45),
label='Column header cell', hatch='//////', alpha=0.3),
Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1),
label='Projected row header cell', hatch='//////', alpha=0.3)]
plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0,
fontsize=10, ncol=3)
plt.gcf().set_size_inches(10, 10)
plt.axis('off')
img_buf = io.BytesIO()
plt.savefig(img_buf, bbox_inches='tight', dpi=150)
plt.close()
return PIL.Image.open(img_buf)
# def pytess(cell_pil_img):
# return ' '.join(pytesseract.image_to_data(cell_pil_img, output_type=Output.DICT, config='-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --tessdata-dir tessdata --oem 3 --psm 6')['text']).strip()
# def resize(pil_img, size=1800):
# length_x, width_y = pil_img.size
# factor = max(1, size / length_x)
# size = int(factor * length_x), int(factor * width_y)
# pil_img = pil_img.resize(size, PIL.Image.ANTIALIAS)
# return pil_img, factor
# def image_smoothening(img):
# ret1, th1 = cv2.threshold(img, 180, 255, cv2.THRESH_BINARY)
# ret2, th2 = cv2.threshold(th1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# blur = cv2.GaussianBlur(th2, (1, 1), 0)
# ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# return th3
# def remove_noise_and_smooth(pil_img):
# img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2GRAY)
# filtered = cv2.adaptiveThreshold(img.astype(np.uint8), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 41, 3)
# kernel = np.ones((1, 1), np.uint8)
# opening = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel)
# closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)
# img = image_smoothening(img)
# or_image = cv2.bitwise_or(img, closing)
# pil_img = PIL.Image.fromarray(or_image)
# return pil_img
# def extract_text_from_cells(pil_img, cells):
# pil_img, factor = resize(pil_img)
# #pil_img = remove_noise_and_smooth(pil_img)
# #display(pil_img)
# for cell in cells:
# bbox = [x * factor for x in cell['bbox']]
# cell_pil_img = pil_img.crop(bbox)
# #cell_pil_img = remove_noise_and_smooth(cell_pil_img)
# #cell_pil_img = tess_prep(cell_pil_img)
# cell['cell text'] = pytess(cell_pil_img)
# return cells
def extract_text_from_cells(cells, sep=' '):
for cell in cells:
spans = cell['spans']
text = ''
for span in spans:
if 'text' in span:
text += span['text'] + sep
cell['cell_text'] = text
return cells
def cells_to_csv(cells):
if len(cells) > 0:
num_columns = max([max(cell['column_nums']) for cell in cells]) + 1
num_rows = max([max(cell['row_nums']) for cell in cells]) + 1
else:
return
header_cells = [cell for cell in cells if cell['header']]
if len(header_cells) > 0:
max_header_row = max([max(cell['row_nums']) for cell in header_cells])
else:
max_header_row = -1
table_array = np.empty([num_rows, num_columns], dtype='object')
if len(cells) > 0:
for cell in cells:
for row_num in cell['row_nums']:
for column_num in cell['column_nums']:
table_array[row_num, column_num] = cell['cell_text']
header = table_array[:max_header_row+1,:]
flattened_header = []
for col in header.transpose():
flattened_header.append(' | '.join(OrderedDict.fromkeys(col)))
df = pd.DataFrame(table_array[max_header_row+1:,:], index=None, columns=flattened_header)
return df, df.to_csv(index=None)
def cells_to_html(cells):
cells = sorted(cells, key=lambda k: min(k['column_nums']))
cells = sorted(cells, key=lambda k: min(k['row_nums']))
table = ET.Element('table')
current_row = -1
for cell in cells:
this_row = min(cell['row_nums'])
attrib = {}
colspan = len(cell['column_nums'])
if colspan > 1:
attrib['colspan'] = str(colspan)
rowspan = len(cell['row_nums'])
if rowspan > 1:
attrib['rowspan'] = str(rowspan)
if this_row > current_row:
current_row = this_row
if cell['header']:
cell_tag = 'th'
row = ET.SubElement(table, 'tr')
else:
cell_tag = 'td'
row = ET.SubElement(table, 'tr')
tcell = ET.SubElement(row, cell_tag, attrib=attrib)
tcell.text = cell['cell_text']
return str(ET.tostring(table, encoding='unicode', short_empty_elements=False))
# def cells_to_html(cells):
# for cell in cells:
# cell['column_nums'].sort()
# cell['row_nums'].sort()
# n_cols = max(cell['column_nums'][-1] for cell in cells) + 1
# n_rows = max(cell['row_nums'][-1] for cell in cells) + 1
# html_code = ''
# for r in range(n_rows):
# r_cells = [cell for cell in cells if cell['row_nums'][0] == r]
# r_cells.sort(key=lambda x: x['column_nums'][0])
# r_html = ''
# for cell in r_cells:
# rowspan = cell['row_nums'][-1] - cell['row_nums'][0] + 1
# colspan = cell['column_nums'][-1] - cell['column_nums'][0] + 1
# r_html += f'<td rowspan='{rowspan}' colspan='{colspan}'>{escape(cell['text'])}</td>'
# html_code += f'<tr>{r_html}</tr>'
# html_code = '''<html>
# <head>
# <meta charset='UTF-8'>
# <style>
# table, th, td {
# border: 1px solid black;
# font-size: 10px;
# }
# </style>
# </head>
# <body>
# <table frame='hsides' rules='groups' width='100%%'>
# %s
# </table>
# </body>
# </html>''' % html_code
# soup = bs(html_code)
# html_code = soup.prettify()
# return html_code
def cells_to_excel(cells, file_path):
def int2xlsx(i):
if i < 26:
return chr(i + 65)
return f'{chr(i // 26 + 64)}{chr(i % 26 + 65)}'
cells = sorted(cells, key=lambda k: min(k['column_nums']))
cells = sorted(cells, key=lambda k: min(k['row_nums']))
workbook = xlsxwriter.Workbook(file_path)
cell_format = workbook.add_format(
{'align': 'center', 'valign': 'vcenter'}
)
worksheet = workbook.add_worksheet(name='Table')
table_start_index = 0
for cell in cells:
start_row = min(cell['row_nums'])
end_row = max(cell['row_nums'])
start_col = min(cell['column_nums'])
end_col = max(cell['column_nums'])
if start_row == end_row and start_col == end_col:
worksheet.write(
table_start_index + start_row,
start_col,
cell['cell_text'],
cell_format,
)
else:
if start_col == end_col and start_row == end_row:
excel_index = f'{int2xlsx(table_start_index + start_col)}{table_start_index + start_row + 1}'
else:
excel_index = f'{int2xlsx(table_start_index + start_col)}{table_start_index + start_row + 1}:{int2xlsx(table_start_index + end_col)}{table_start_index + end_row + 1}'
worksheet.merge_range(
excel_index, cell['cell_text'], cell_format
)
workbook.close()
def main():
st.title('Table Extraction Demo')
filename = st.file_uploader('Upload image', type=['png', 'jpeg', 'jpg'])
if st.button('Analyze image'):
if filename is None:
st.write('Please upload an image')
else:
tabs = st.tabs(
['Table Detection', 'Table Structure Recognition', 'Extracted Table(s)']
)
print(filename)
pil_img = PIL.Image.open(filename)
detection_result = table_detection(pil_img)
crop_images, vis_det_img = crop_image(pil_img, detection_result)
all_cells = []
with tabs[0]:
st.header('Table Detection')
st.image(vis_det_img)
with tabs[1]:
st.header('Table Structure Recognition')
str_cols = st.columns(4)
str_cols[0].subheader('Table image')
str_cols[1].subheader('OCR result')
str_cols[2].subheader('Structure result')
str_cols[3].subheader('Cells result')
for idx, img in enumerate(crop_images):
str_cols = st.columns(4)
vis_img = visualize_image(img)
str_cols[0].image(vis_img)
ocr_result = ocr(img)
vis_ocr_img = visualize_ocr(img, ocr_result)
str_cols[1].image(vis_ocr_img)
structure_result = table_structure(img)
vis_str_img = visualize_structure(img, structure_result)
str_cols[2].image(vis_str_img)
table_structures, cells, confidence_score = convert_stucture(ocr_result, img, structure_result)
cells = extract_text_from_cells(cells)
vis_cells_img = visualize_cells(img, cells)
str_cols[3].image(vis_cells_img)
all_cells.append(cells)
#df, csv_result = cells_to_csv(cells)
#print(df)
with tabs[2]:
st.header('Extracted Table(s)')
for idx, col in enumerate(st.columns(len(all_cells))):
with col:
if len(all_cells) > 1:
st.header(f'Table {idx + 1}')
with TemporaryDirectory() as temp_dir_path:
df = None
xlsx_path = os.path.join(temp_dir_path, f'debug_{idx}.xlsx')
cells_to_excel(all_cells[idx], xlsx_path)
with open(xlsx_path, 'rb') as ref:
df = pd.read_excel(ref)
st.dataframe(df)
st.download_button(
'Download Excel File',
ref,
file_name=f'output_{idx}.xlsx',
)
for idx, cells in enumerate(all_cells):
html_result = cells_to_html(cells)
st.subheader(f'HTML Table {idx + 1}')
st.markdown(html_result, unsafe_allow_html=True)
if __name__ == '__main__':
main()
|