Spaces:
Build error
Build error
""" | |
Copyright (C) 2021 Microsoft Corporation | |
""" | |
from collections import defaultdict | |
from fitz import Rect | |
def apply_threshold(objects, threshold): | |
""" | |
Filter out objects below a certain score. | |
""" | |
return [obj for obj in objects if obj['score'] >= threshold] | |
def apply_class_thresholds(bboxes, labels, scores, class_names, class_thresholds): | |
""" | |
Filter out bounding boxes whose confidence is below the confidence threshold for | |
its associated class label. | |
""" | |
# Apply class-specific thresholds | |
indices_above_threshold = [idx for idx, (score, label) in enumerate(zip(scores, labels)) | |
if score >= class_thresholds[ | |
class_names[label] | |
] | |
] | |
bboxes = [bboxes[idx] for idx in indices_above_threshold] | |
scores = [scores[idx] for idx in indices_above_threshold] | |
labels = [labels[idx] for idx in indices_above_threshold] | |
return bboxes, scores, labels | |
def iou(bbox1, bbox2): | |
""" | |
Compute the intersection-over-union of two bounding boxes. | |
""" | |
intersection = Rect(bbox1).intersect(bbox2) | |
union = Rect(bbox1).include_rect(bbox2) | |
union_area = union.get_area() | |
if union_area > 0: | |
return intersection.get_area() / union.get_area() | |
return 0 | |
def iob(bbox1, bbox2): | |
""" | |
Compute the intersection area over box area, for bbox1. | |
""" | |
intersection = Rect(bbox1).intersect(bbox2) | |
bbox1_area = Rect(bbox1).get_area() | |
if bbox1_area > 0: | |
return intersection.get_area() / bbox1_area | |
return 0 | |
def objects_to_cells(table, objects_in_table, tokens_in_table, class_map, class_thresholds): | |
""" | |
Process the bounding boxes produced by the table structure recognition model | |
and the token/word/span bounding boxes into table cells. | |
Also return a confidence score based on how well the text was able to be | |
uniquely slotted into the cells detected by the table model. | |
""" | |
table_structures = objects_to_table_structures(table, objects_in_table, tokens_in_table, class_map, | |
class_thresholds) | |
# Check for a valid table | |
if len(table_structures['columns']) < 1 or len(table_structures['rows']) < 1: | |
cells = []#None | |
confidence_score = 0 | |
else: | |
cells, confidence_score = table_structure_to_cells(table_structures, tokens_in_table, table['bbox']) | |
return table_structures, cells, confidence_score | |
def objects_to_table_structures(table_object, objects_in_table, tokens_in_table, class_names, class_thresholds): | |
""" | |
Process the bounding boxes produced by the table structure recognition model into | |
a *consistent* set of table structures (rows, columns, supercells, headers). | |
This entails resolving conflicts/overlaps, and ensuring the boxes meet certain alignment | |
conditions (for example: rows should all have the same width, etc.). | |
""" | |
page_num = table_object['page_num'] | |
table_structures = {} | |
columns = [obj for obj in objects_in_table if class_names[obj['label']] == 'table column'] | |
rows = [obj for obj in objects_in_table if class_names[obj['label']] == 'table row'] | |
headers = [obj for obj in objects_in_table if class_names[obj['label']] == 'table column header'] | |
supercells = [obj for obj in objects_in_table if class_names[obj['label']] == 'table spanning cell'] | |
for obj in supercells: | |
obj['subheader'] = False | |
subheaders = [obj for obj in objects_in_table if class_names[obj['label']] == 'table projected row header'] | |
for obj in subheaders: | |
obj['subheader'] = True | |
supercells += subheaders | |
for obj in rows: | |
obj['header'] = False | |
for header_obj in headers: | |
if iob(obj['bbox'], header_obj['bbox']) >= 0.5: | |
obj['header'] = True | |
for row in rows: | |
row['page'] = page_num | |
for column in columns: | |
column['page'] = page_num | |
#Refine table structures | |
rows = refine_rows(rows, tokens_in_table, class_thresholds['table row']) | |
columns = refine_columns(columns, tokens_in_table, class_thresholds['table column']) | |
# Shrink table bbox to just the total height of the rows | |
# and the total width of the columns | |
row_rect = Rect() | |
for obj in rows: | |
row_rect.include_rect(obj['bbox']) | |
column_rect = Rect() | |
for obj in columns: | |
column_rect.include_rect(obj['bbox']) | |
table_object['row_column_bbox'] = [column_rect[0], row_rect[1], column_rect[2], row_rect[3]] | |
table_object['bbox'] = table_object['row_column_bbox'] | |
# Process the rows and columns into a complete segmented table | |
columns = align_columns(columns, table_object['row_column_bbox']) | |
rows = align_rows(rows, table_object['row_column_bbox']) | |
table_structures['rows'] = rows | |
table_structures['columns'] = columns | |
table_structures['headers'] = headers | |
table_structures['supercells'] = supercells | |
if len(rows) > 0 and len(columns) > 1: | |
table_structures = refine_table_structures(table_object['bbox'], table_structures, tokens_in_table, class_thresholds) | |
return table_structures | |
def refine_rows(rows, tokens, score_threshold): | |
""" | |
Apply operations to the detected rows, such as | |
thresholding, NMS, and alignment. | |
""" | |
if len(tokens) > 0: | |
rows = nms_by_containment(rows, tokens, overlap_threshold=0.5, target='row') | |
# remove_objects_without_content(tokens, rows) # TODO | |
else: | |
rows = nms(rows, match_criteria="object2_overlap", | |
match_threshold=0.5, keep_higher=True) | |
if len(rows) > 1: | |
rows = sort_objects_top_to_bottom(rows) | |
return rows | |
def refine_columns(columns, tokens, score_threshold): | |
""" | |
Apply operations to the detected columns, such as | |
thresholding, NMS, and alignment. | |
""" | |
if len(tokens) > 0: | |
columns = nms_by_containment(columns, tokens, overlap_threshold=0.5, target='column') | |
# remove_objects_without_content(tokens, columns) # TODO | |
else: | |
columns = nms(columns, match_criteria="object2_overlap", | |
match_threshold=0.25, keep_higher=True) | |
if len(columns) > 1: | |
columns = sort_objects_left_to_right(columns) | |
return columns | |
def nms_by_containment(container_objects, package_objects, overlap_threshold=0.5, target='row'): | |
""" | |
Non-maxima suppression (NMS) of objects based on shared containment of other objects. | |
""" | |
container_objects = sort_objects_by_score(container_objects) | |
num_objects = len(container_objects) | |
suppression = [False for obj in container_objects] | |
packages_by_container, _, _ = slot_into_containers(container_objects, package_objects, overlap_threshold=overlap_threshold, | |
unique_assignment=False, forced_assignment=False) | |
for object2_num in range(1, num_objects): | |
object2_packages = set(packages_by_container[object2_num]) | |
if len(object2_packages) == 0: | |
suppression[object2_num] = True | |
for object1_num in range(object2_num): | |
if not suppression[object1_num]: | |
object1_packages = set(packages_by_container[object1_num]) | |
if len(object2_packages.intersection(object1_packages)) > 0: | |
if target == 'row': | |
row1_height = container_objects[object1_num]['bbox'][3] - container_objects[object1_num]['bbox'][1] | |
row2_height = container_objects[object2_num]['bbox'][3] - container_objects[object2_num]['bbox'][1] | |
min_row_overlap = max(container_objects[object1_num]['bbox'][1], container_objects[object2_num]['bbox'][1]) | |
max_row_overlap = min(container_objects[object1_num]['bbox'][3], container_objects[object2_num]['bbox'][3]) | |
overlap_height = max_row_overlap - min_row_overlap | |
overlap_fraction = max(overlap_height/row1_height, overlap_height/row2_height) | |
elif target == 'column': | |
col1_height = container_objects[object1_num]['bbox'][2] - container_objects[object1_num]['bbox'][0] | |
col2_height = container_objects[object2_num]['bbox'][2] - container_objects[object2_num]['bbox'][0] | |
min_col_overlap = max(container_objects[object1_num]['bbox'][0], container_objects[object2_num]['bbox'][0]) | |
max_col_overlap = min(container_objects[object1_num]['bbox'][2], container_objects[object2_num]['bbox'][2]) | |
overlap_width = max_col_overlap - min_col_overlap | |
overlap_fraction = max(overlap_width/col1_height, overlap_width/col2_height) | |
if overlap_fraction >= 0.5: | |
suppression[object2_num] = True | |
final_objects = [obj for idx, obj in enumerate(container_objects) if not suppression[idx]] | |
return final_objects | |
def slot_into_containers(container_objects, package_objects, overlap_threshold=0.5, | |
unique_assignment=True, forced_assignment=False): | |
""" | |
Slot a collection of objects into the container they occupy most (the container which holds the largest fraction of the object). | |
""" | |
best_match_scores = [] | |
container_assignments = [[] for container in container_objects] | |
package_assignments = [[] for package in package_objects] | |
if len(container_objects) == 0 or len(package_objects) == 0: | |
return container_assignments, package_assignments, best_match_scores | |
match_scores = defaultdict(dict) | |
for package_num, package in enumerate(package_objects): | |
match_scores = [] | |
package_rect = Rect(package['bbox']) | |
package_area = package_rect.get_area() | |
for container_num, container in enumerate(container_objects): | |
container_rect = Rect(container['bbox']) | |
intersect_area = container_rect.intersect(package['bbox']).get_area() | |
overlap_fraction = intersect_area / package_area | |
match_scores.append({'container': container, 'container_num': container_num, 'score': overlap_fraction}) | |
sorted_match_scores = sort_objects_by_score(match_scores) | |
best_match_score = sorted_match_scores[0] | |
best_match_scores.append(best_match_score['score']) | |
if forced_assignment or best_match_score['score'] >= overlap_threshold: | |
container_assignments[best_match_score['container_num']].append(package_num) | |
package_assignments[package_num].append(best_match_score['container_num']) | |
if not unique_assignment: # slot package into all eligible slots | |
for match_score in sorted_match_scores[1:]: | |
if match_score['score'] >= overlap_threshold: | |
container_assignments[match_score['container_num']].append(package_num) | |
package_assignments[package_num].append(match_score['container_num']) | |
else: | |
break | |
return container_assignments, package_assignments, best_match_scores | |
def sort_objects_by_score(objects, reverse=True): | |
""" | |
Put any set of objects in order from high score to low score. | |
""" | |
if reverse: | |
sign = -1 | |
else: | |
sign = 1 | |
return sorted(objects, key=lambda k: sign*k['score']) | |
def remove_objects_without_content(page_spans, objects): | |
""" | |
Remove any objects (these can be rows, columns, supercells, etc.) that don't | |
have any text associated with them. | |
""" | |
for obj in objects[:]: | |
object_text, _ = extract_text_inside_bbox(page_spans, obj['bbox']) | |
if len(object_text.strip()) == 0: | |
objects.remove(obj) | |
def extract_text_inside_bbox(spans, bbox): | |
""" | |
Extract the text inside a bounding box. | |
""" | |
bbox_spans = get_bbox_span_subset(spans, bbox) | |
bbox_text = extract_text_from_spans(bbox_spans, remove_integer_superscripts=True) | |
return bbox_text, bbox_spans | |
def get_bbox_span_subset(spans, bbox, threshold=0.5): | |
""" | |
Reduce the set of spans to those that fall within a bounding box. | |
threshold: the fraction of the span that must overlap with the bbox. | |
""" | |
span_subset = [] | |
for span in spans: | |
if overlaps(span['bbox'], bbox, threshold): | |
span_subset.append(span) | |
return span_subset | |
def overlaps(bbox1, bbox2, threshold=0.5): | |
""" | |
Test if more than "threshold" fraction of bbox1 overlaps with bbox2. | |
""" | |
rect1 = Rect(list(bbox1)) | |
area1 = rect1.get_area() | |
if area1 == 0: | |
return False | |
return rect1.intersect(list(bbox2)).get_area()/area1 >= threshold | |
def extract_text_from_spans(spans, join_with_space=True, remove_integer_superscripts=True): | |
""" | |
Convert a collection of page tokens/words/spans into a single text string. | |
""" | |
if join_with_space: | |
join_char = " " | |
else: | |
join_char = "" | |
spans_copy = spans[:] | |
if remove_integer_superscripts: | |
for span in spans: | |
if not 'flags' in span: | |
continue | |
flags = span['flags'] | |
if flags & 2**0: # superscript flag | |
if is_int(span['text']): | |
spans_copy.remove(span) | |
else: | |
span['superscript'] = True | |
if len(spans_copy) == 0: | |
return "" | |
spans_copy.sort(key=lambda span: span['span_num']) | |
spans_copy.sort(key=lambda span: span['line_num']) | |
spans_copy.sort(key=lambda span: span['block_num']) | |
# Force the span at the end of every line within a block to have exactly one space | |
# unless the line ends with a space or ends with a non-space followed by a hyphen | |
line_texts = [] | |
line_span_texts = [spans_copy[0]['text']] | |
for span1, span2 in zip(spans_copy[:-1], spans_copy[1:]): | |
if not span1['block_num'] == span2['block_num'] or not span1['line_num'] == span2['line_num']: | |
line_text = join_char.join(line_span_texts).strip() | |
if (len(line_text) > 0 | |
and not line_text[-1] == ' ' | |
and not (len(line_text) > 1 and line_text[-1] == "-" and not line_text[-2] == ' ')): | |
if not join_with_space: | |
line_text += ' ' | |
line_texts.append(line_text) | |
line_span_texts = [span2['text']] | |
else: | |
line_span_texts.append(span2['text']) | |
line_text = join_char.join(line_span_texts) | |
line_texts.append(line_text) | |
return join_char.join(line_texts).strip() | |
def sort_objects_left_to_right(objs): | |
""" | |
Put the objects in order from left to right. | |
""" | |
return sorted(objs, key=lambda k: k['bbox'][0] + k['bbox'][2]) | |
def sort_objects_top_to_bottom(objs): | |
""" | |
Put the objects in order from top to bottom. | |
""" | |
return sorted(objs, key=lambda k: k['bbox'][1] + k['bbox'][3]) | |
def align_columns(columns, bbox): | |
""" | |
For every column, align the top and bottom boundaries to the final | |
table bounding box. | |
""" | |
try: | |
for column in columns: | |
column['bbox'][1] = bbox[1] | |
column['bbox'][3] = bbox[3] | |
except Exception as err: | |
print("Could not align columns: {}".format(err)) | |
pass | |
return columns | |
def align_rows(rows, bbox): | |
""" | |
For every row, align the left and right boundaries to the final | |
table bounding box. | |
""" | |
try: | |
for row in rows: | |
row['bbox'][0] = bbox[0] | |
row['bbox'][2] = bbox[2] | |
except Exception as err: | |
print("Could not align rows: {}".format(err)) | |
pass | |
return rows | |
def refine_table_structures(table_bbox, table_structures, page_spans, class_thresholds): | |
""" | |
Apply operations to the detected table structure objects such as | |
thresholding, NMS, and alignment. | |
""" | |
rows = table_structures["rows"] | |
columns = table_structures['columns'] | |
#columns = fill_column_gaps(columns, table_bbox) | |
#rows = fill_row_gaps(rows, table_bbox) | |
# Process the headers | |
headers = table_structures['headers'] | |
headers = apply_threshold(headers, class_thresholds["table column header"]) | |
headers = nms(headers) | |
headers = align_headers(headers, rows) | |
# Process supercells | |
supercells = [elem for elem in table_structures['supercells'] if not elem['subheader']] | |
subheaders = [elem for elem in table_structures['supercells'] if elem['subheader']] | |
supercells = apply_threshold(supercells, class_thresholds["table spanning cell"]) | |
subheaders = apply_threshold(subheaders, class_thresholds["table projected row header"]) | |
supercells += subheaders | |
# Align before NMS for supercells because alignment brings them into agreement | |
# with rows and columns first; if supercells still overlap after this operation, | |
# the threshold for NMS can basically be lowered to just above 0 | |
supercells = align_supercells(supercells, rows, columns) | |
supercells = nms_supercells(supercells) | |
header_supercell_tree(supercells) | |
table_structures['columns'] = columns | |
table_structures['rows'] = rows | |
table_structures['supercells'] = supercells | |
table_structures['headers'] = headers | |
return table_structures | |
def nms(objects, match_criteria="object2_overlap", match_threshold=0.05, keep_higher=True): | |
""" | |
A customizable version of non-maxima suppression (NMS). | |
Default behavior: If a lower-confidence object overlaps more than 5% of its area | |
with a higher-confidence object, remove the lower-confidence object. | |
objects: set of dicts; each object dict must have a 'bbox' and a 'score' field | |
match_criteria: how to measure how much two objects "overlap" | |
match_threshold: the cutoff for determining that overlap requires suppression of one object | |
keep_higher: if True, keep the object with the higher metric; otherwise, keep the lower | |
""" | |
if len(objects) == 0: | |
return [] | |
objects = sort_objects_by_score(objects, reverse=keep_higher) | |
num_objects = len(objects) | |
suppression = [False for obj in objects] | |
for object2_num in range(1, num_objects): | |
object2_rect = Rect(objects[object2_num]['bbox']) | |
object2_area = object2_rect.get_area() | |
for object1_num in range(object2_num): | |
if not suppression[object1_num]: | |
object1_rect = Rect(objects[object1_num]['bbox']) | |
object1_area = object1_rect.get_area() | |
intersect_area = object1_rect.intersect(object2_rect).get_area() | |
try: | |
if match_criteria=="object1_overlap": | |
metric = intersect_area / object1_area | |
elif match_criteria=="object2_overlap": | |
metric = intersect_area / object2_area | |
elif match_criteria=="iou": | |
metric = intersect_area / (object1_area + object2_area - intersect_area) | |
if metric >= match_threshold: | |
suppression[object2_num] = True | |
break | |
except Exception: | |
# Intended to recover from divide-by-zero | |
pass | |
return [obj for idx, obj in enumerate(objects) if not suppression[idx]] | |
def align_headers(headers, rows): | |
""" | |
Adjust the header boundary to be the convex hull of the rows it intersects | |
at least 50% of the height of. | |
For now, we are not supporting tables with multiple headers, so we need to | |
eliminate anything besides the top-most header. | |
""" | |
aligned_headers = [] | |
for row in rows: | |
row['header'] = False | |
header_row_nums = [] | |
for header in headers: | |
for row_num, row in enumerate(rows): | |
row_height = row['bbox'][3] - row['bbox'][1] | |
min_row_overlap = max(row['bbox'][1], header['bbox'][1]) | |
max_row_overlap = min(row['bbox'][3], header['bbox'][3]) | |
overlap_height = max_row_overlap - min_row_overlap | |
if overlap_height / row_height >= 0.5: | |
header_row_nums.append(row_num) | |
if len(header_row_nums) == 0: | |
return aligned_headers | |
header_rect = Rect() | |
if header_row_nums[0] > 0: | |
header_row_nums = list(range(header_row_nums[0]+1)) + header_row_nums | |
last_row_num = -1 | |
for row_num in header_row_nums: | |
if row_num == last_row_num + 1: | |
row = rows[row_num] | |
row['header'] = True | |
header_rect = header_rect.include_rect(row['bbox']) | |
last_row_num = row_num | |
else: | |
# Break as soon as a non-header row is encountered. | |
# This ignores any subsequent rows in the table labeled as a header. | |
# Having more than 1 header is not supported currently. | |
break | |
header = {'bbox': list(header_rect)} | |
aligned_headers.append(header) | |
return aligned_headers | |
def align_supercells(supercells, rows, columns): | |
""" | |
For each supercell, align it to the rows it intersects 50% of the height of, | |
and the columns it intersects 50% of the width of. | |
Eliminate supercells for which there are no rows and columns it intersects 50% with. | |
""" | |
aligned_supercells = [] | |
for supercell in supercells: | |
supercell['header'] = False | |
row_bbox_rect = None | |
col_bbox_rect = None | |
intersecting_header_rows = set() | |
intersecting_data_rows = set() | |
for row_num, row in enumerate(rows): | |
row_height = row['bbox'][3] - row['bbox'][1] | |
supercell_height = supercell['bbox'][3] - supercell['bbox'][1] | |
min_row_overlap = max(row['bbox'][1], supercell['bbox'][1]) | |
max_row_overlap = min(row['bbox'][3], supercell['bbox'][3]) | |
overlap_height = max_row_overlap - min_row_overlap | |
if 'span' in supercell: | |
overlap_fraction = max(overlap_height/row_height, | |
overlap_height/supercell_height) | |
else: | |
overlap_fraction = overlap_height / row_height | |
if overlap_fraction >= 0.5: | |
if 'header' in row and row['header']: | |
intersecting_header_rows.add(row_num) | |
else: | |
intersecting_data_rows.add(row_num) | |
# Supercell cannot span across the header boundary; eliminate whichever | |
# group of rows is the smallest | |
supercell['header'] = False | |
if len(intersecting_data_rows) > 0 and len(intersecting_header_rows) > 0: | |
if len(intersecting_data_rows) > len(intersecting_header_rows): | |
intersecting_header_rows = set() | |
else: | |
intersecting_data_rows = set() | |
if len(intersecting_header_rows) > 0: | |
supercell['header'] = True | |
elif 'span' in supercell: | |
continue # Require span supercell to be in the header | |
intersecting_rows = intersecting_data_rows.union(intersecting_header_rows) | |
# Determine vertical span of aligned supercell | |
for row_num in intersecting_rows: | |
if row_bbox_rect is None: | |
row_bbox_rect = Rect(rows[row_num]['bbox']) | |
else: | |
row_bbox_rect = row_bbox_rect.include_rect(rows[row_num]['bbox']) | |
if row_bbox_rect is None: | |
continue | |
intersecting_cols = [] | |
for col_num, col in enumerate(columns): | |
col_width = col['bbox'][2] - col['bbox'][0] | |
supercell_width = supercell['bbox'][2] - supercell['bbox'][0] | |
min_col_overlap = max(col['bbox'][0], supercell['bbox'][0]) | |
max_col_overlap = min(col['bbox'][2], supercell['bbox'][2]) | |
overlap_width = max_col_overlap - min_col_overlap | |
if 'span' in supercell: | |
overlap_fraction = max(overlap_width/col_width, | |
overlap_width/supercell_width) | |
# Multiply by 2 effectively lowers the threshold to 0.25 | |
if supercell['header']: | |
overlap_fraction = overlap_fraction * 2 | |
else: | |
overlap_fraction = overlap_width / col_width | |
if overlap_fraction >= 0.5: | |
intersecting_cols.append(col_num) | |
if col_bbox_rect is None: | |
col_bbox_rect = Rect(col['bbox']) | |
else: | |
col_bbox_rect = col_bbox_rect.include_rect(col['bbox']) | |
if col_bbox_rect is None: | |
continue | |
supercell_bbox = list(row_bbox_rect.intersect(col_bbox_rect)) | |
supercell['bbox'] = supercell_bbox | |
# Only a true supercell if it joins across multiple rows or columns | |
if (len(intersecting_rows) > 0 and len(intersecting_cols) > 0 | |
and (len(intersecting_rows) > 1 or len(intersecting_cols) > 1)): | |
supercell['row_numbers'] = list(intersecting_rows) | |
supercell['column_numbers'] = intersecting_cols | |
aligned_supercells.append(supercell) | |
# A span supercell in the header means there must be supercells above it in the header | |
if 'span' in supercell and supercell['header'] and len(supercell['column_numbers']) > 1: | |
for row_num in range(0, min(supercell['row_numbers'])): | |
new_supercell = {'row_numbers': [row_num], 'column_numbers': supercell['column_numbers'], | |
'score': supercell['score'], 'propagated': True} | |
new_supercell_columns = [columns[idx] for idx in supercell['column_numbers']] | |
new_supercell_rows = [rows[idx] for idx in supercell['row_numbers']] | |
bbox = [min([column['bbox'][0] for column in new_supercell_columns]), | |
min([row['bbox'][1] for row in new_supercell_rows]), | |
max([column['bbox'][2] for column in new_supercell_columns]), | |
max([row['bbox'][3] for row in new_supercell_rows])] | |
new_supercell['bbox'] = bbox | |
aligned_supercells.append(new_supercell) | |
return aligned_supercells | |
def nms_supercells(supercells): | |
""" | |
A NMS scheme for supercells that first attempts to shrink supercells to | |
resolve overlap. | |
If two supercells overlap the same (sub)cell, shrink the lower confidence | |
supercell to resolve the overlap. If shrunk supercell is empty, remove it. | |
""" | |
supercells = sort_objects_by_score(supercells) | |
num_supercells = len(supercells) | |
suppression = [False for supercell in supercells] | |
for supercell2_num in range(1, num_supercells): | |
supercell2 = supercells[supercell2_num] | |
for supercell1_num in range(supercell2_num): | |
supercell1 = supercells[supercell1_num] | |
remove_supercell_overlap(supercell1, supercell2) | |
if ((len(supercell2['row_numbers']) < 2 and len(supercell2['column_numbers']) < 2) | |
or len(supercell2['row_numbers']) == 0 or len(supercell2['column_numbers']) == 0): | |
suppression[supercell2_num] = True | |
return [obj for idx, obj in enumerate(supercells) if not suppression[idx]] | |
def header_supercell_tree(supercells): | |
""" | |
Make sure no supercell in the header is below more than one supercell in any row above it. | |
The cells in the header form a tree, but a supercell with more than one supercell in a row | |
above it means that some cell has more than one parent, which is not allowed. Eliminate | |
any supercell that would cause this to be violated. | |
""" | |
header_supercells = [supercell for supercell in supercells if 'header' in supercell and supercell['header']] | |
header_supercells = sort_objects_by_score(header_supercells) | |
for header_supercell in header_supercells[:]: | |
ancestors_by_row = defaultdict(int) | |
min_row = min(header_supercell['row_numbers']) | |
for header_supercell2 in header_supercells: | |
max_row2 = max(header_supercell2['row_numbers']) | |
if max_row2 < min_row: | |
if (set(header_supercell['column_numbers']).issubset( | |
set(header_supercell2['column_numbers']))): | |
for row2 in header_supercell2['row_numbers']: | |
ancestors_by_row[row2] += 1 | |
for row in range(0, min_row): | |
if not ancestors_by_row[row] == 1: | |
supercells.remove(header_supercell) | |
break | |
def table_structure_to_cells(table_structures, table_spans, table_bbox): | |
""" | |
Assuming the row, column, supercell, and header bounding boxes have | |
been refined into a set of consistent table structures, process these | |
table structures into table cells. This is a universal representation | |
format for the table, which can later be exported to Pandas or CSV formats. | |
Classify the cells as header/access cells or data cells | |
based on if they intersect with the header bounding box. | |
""" | |
columns = table_structures['columns'] | |
rows = table_structures['rows'] | |
supercells = table_structures['supercells'] | |
cells = [] | |
subcells = [] | |
# Identify complete cells and subcells | |
for column_num, column in enumerate(columns): | |
for row_num, row in enumerate(rows): | |
column_rect = Rect(list(column['bbox'])) | |
row_rect = Rect(list(row['bbox'])) | |
cell_rect = row_rect.intersect(column_rect) | |
header = 'header' in row and row['header'] | |
cell = {'bbox': list(cell_rect), 'column_nums': [column_num], 'row_nums': [row_num], | |
'header': header} | |
cell['subcell'] = False | |
for supercell in supercells: | |
supercell_rect = Rect(list(supercell['bbox'])) | |
if (supercell_rect.intersect(cell_rect).get_area() | |
/ cell_rect.get_area()) > 0.5: | |
cell['subcell'] = True | |
break | |
if cell['subcell']: | |
subcells.append(cell) | |
else: | |
#cell_text = extract_text_inside_bbox(table_spans, cell['bbox']) | |
#cell['cell_text'] = cell_text | |
cell['subheader'] = False | |
cells.append(cell) | |
for supercell in supercells: | |
supercell_rect = Rect(list(supercell['bbox'])) | |
cell_columns = set() | |
cell_rows = set() | |
cell_rect = None | |
header = True | |
for subcell in subcells: | |
subcell_rect = Rect(list(subcell['bbox'])) | |
subcell_rect_area = subcell_rect.get_area() | |
if (subcell_rect.intersect(supercell_rect).get_area() | |
/ subcell_rect_area) > 0.5: | |
if cell_rect is None: | |
cell_rect = Rect(list(subcell['bbox'])) | |
else: | |
cell_rect.include_rect(Rect(list(subcell['bbox']))) | |
cell_rows = cell_rows.union(set(subcell['row_nums'])) | |
cell_columns = cell_columns.union(set(subcell['column_nums'])) | |
# By convention here, all subcells must be classified | |
# as header cells for a supercell to be classified as a header cell; | |
# otherwise, this could lead to a non-rectangular header region | |
header = header and 'header' in subcell and subcell['header'] | |
if len(cell_rows) > 0 and len(cell_columns) > 0: | |
cell = {'bbox': list(cell_rect), 'column_nums': list(cell_columns), 'row_nums': list(cell_rows), | |
'header': header, 'subheader': supercell['subheader']} | |
cells.append(cell) | |
# Compute a confidence score based on how well the page tokens | |
# slot into the cells reported by the model | |
_, _, cell_match_scores = slot_into_containers(cells, table_spans) | |
try: | |
mean_match_score = sum(cell_match_scores) / len(cell_match_scores) | |
min_match_score = min(cell_match_scores) | |
confidence_score = (mean_match_score + min_match_score)/2 | |
except: | |
confidence_score = 0 | |
# Dilate rows and columns before final extraction | |
#dilated_columns = fill_column_gaps(columns, table_bbox) | |
dilated_columns = columns | |
#dilated_rows = fill_row_gaps(rows, table_bbox) | |
dilated_rows = rows | |
for cell in cells: | |
column_rect = Rect() | |
for column_num in cell['column_nums']: | |
column_rect.include_rect(list(dilated_columns[column_num]['bbox'])) | |
row_rect = Rect() | |
for row_num in cell['row_nums']: | |
row_rect.include_rect(list(dilated_rows[row_num]['bbox'])) | |
cell_rect = column_rect.intersect(row_rect) | |
cell['bbox'] = list(cell_rect) | |
span_nums_by_cell, _, _ = slot_into_containers(cells, table_spans, overlap_threshold=0.001, | |
unique_assignment=True, forced_assignment=False) | |
for cell, cell_span_nums in zip(cells, span_nums_by_cell): | |
cell_spans = [table_spans[num] for num in cell_span_nums] | |
# TODO: Refine how text is extracted; should be character-based, not span-based; | |
# but need to associate | |
# cell['cell_text'] = extract_text_from_spans(cell_spans, remove_integer_superscripts=False) # TODO | |
cell['spans'] = cell_spans | |
# Adjust the row, column, and cell bounding boxes to reflect the extracted text | |
num_rows = len(rows) | |
rows = sort_objects_top_to_bottom(rows) | |
num_columns = len(columns) | |
columns = sort_objects_left_to_right(columns) | |
min_y_values_by_row = defaultdict(list) | |
max_y_values_by_row = defaultdict(list) | |
min_x_values_by_column = defaultdict(list) | |
max_x_values_by_column = defaultdict(list) | |
for cell in cells: | |
min_row = min(cell["row_nums"]) | |
max_row = max(cell["row_nums"]) | |
min_column = min(cell["column_nums"]) | |
max_column = max(cell["column_nums"]) | |
for span in cell['spans']: | |
min_x_values_by_column[min_column].append(span['bbox'][0]) | |
min_y_values_by_row[min_row].append(span['bbox'][1]) | |
max_x_values_by_column[max_column].append(span['bbox'][2]) | |
max_y_values_by_row[max_row].append(span['bbox'][3]) | |
for row_num, row in enumerate(rows): | |
if len(min_x_values_by_column[0]) > 0: | |
row['bbox'][0] = min(min_x_values_by_column[0]) | |
if len(min_y_values_by_row[row_num]) > 0: | |
row['bbox'][1] = min(min_y_values_by_row[row_num]) | |
if len(max_x_values_by_column[num_columns-1]) > 0: | |
row['bbox'][2] = max(max_x_values_by_column[num_columns-1]) | |
if len(max_y_values_by_row[row_num]) > 0: | |
row['bbox'][3] = max(max_y_values_by_row[row_num]) | |
for column_num, column in enumerate(columns): | |
if len(min_x_values_by_column[column_num]) > 0: | |
column['bbox'][0] = min(min_x_values_by_column[column_num]) | |
if len(min_y_values_by_row[0]) > 0: | |
column['bbox'][1] = min(min_y_values_by_row[0]) | |
if len(max_x_values_by_column[column_num]) > 0: | |
column['bbox'][2] = max(max_x_values_by_column[column_num]) | |
if len(max_y_values_by_row[num_rows-1]) > 0: | |
column['bbox'][3] = max(max_y_values_by_row[num_rows-1]) | |
for cell in cells: | |
row_rect = Rect() | |
column_rect = Rect() | |
for row_num in cell['row_nums']: | |
row_rect.include_rect(list(rows[row_num]['bbox'])) | |
for column_num in cell['column_nums']: | |
column_rect.include_rect(list(columns[column_num]['bbox'])) | |
cell_rect = row_rect.intersect(column_rect) | |
if cell_rect.get_area() > 0: | |
cell['bbox'] = list(cell_rect) | |
pass | |
return cells, confidence_score | |
def remove_supercell_overlap(supercell1, supercell2): | |
""" | |
This function resolves overlap between supercells (supercells must be | |
disjoint) by iteratively shrinking supercells by the fewest grid cells | |
necessary to resolve the overlap. | |
Example: | |
If two supercells overlap at grid cell (R, C), and supercell #1 is less | |
confident than supercell #2, we eliminate either row R from supercell #1 | |
or column C from supercell #1 by comparing the number of columns in row R | |
versus the number of rows in column C. If the number of columns in row R | |
is less than the number of rows in column C, we eliminate row R from | |
supercell #1. This resolves the overlap by removing fewer grid cells from | |
supercell #1 than if we eliminated column C from it. | |
""" | |
common_rows = set(supercell1['row_numbers']).intersection(set(supercell2['row_numbers'])) | |
common_columns = set(supercell1['column_numbers']).intersection(set(supercell2['column_numbers'])) | |
# While the supercells have overlapping grid cells, continue shrinking the less-confident | |
# supercell one row or one column at a time | |
while len(common_rows) > 0 and len(common_columns) > 0: | |
# Try to shrink the supercell as little as possible to remove the overlap; | |
# if the supercell has fewer rows than columns, remove an overlapping column, | |
# because this removes fewer grid cells from the supercell; | |
# otherwise remove an overlapping row | |
if len(supercell2['row_numbers']) < len(supercell2['column_numbers']): | |
min_column = min(supercell2['column_numbers']) | |
max_column = max(supercell2['column_numbers']) | |
if max_column in common_columns: | |
common_columns.remove(max_column) | |
supercell2['column_numbers'].remove(max_column) | |
elif min_column in common_columns: | |
common_columns.remove(min_column) | |
supercell2['column_numbers'].remove(min_column) | |
else: | |
supercell2['column_numbers'] = [] | |
common_columns = set() | |
else: | |
min_row = min(supercell2['row_numbers']) | |
max_row = max(supercell2['row_numbers']) | |
if max_row in common_rows: | |
common_rows.remove(max_row) | |
supercell2['row_numbers'].remove(max_row) | |
elif min_row in common_rows: | |
common_rows.remove(min_row) | |
supercell2['row_numbers'].remove(min_row) | |
else: | |
supercell2['row_numbers'] = [] | |
common_rows = set() |