Spaces:
Running
Running
import os | |
import json | |
import re | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
from pydantic import BaseModel, Field | |
from typing import Optional, Literal | |
from huggingface_hub.errors import HfHubHTTPError | |
from custom_css import custom_css | |
from variables import * | |
class PromptInput(BaseModel): | |
text: str = Field(..., description="The initial prompt text") | |
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"] = Field(..., description="Choice of meta prompt strategy") | |
class RefinementOutput(BaseModel): | |
query_analysis: Optional[str] = None | |
initial_prompt_evaluation: Optional[str] = None | |
refined_prompt: Optional[str] = None | |
explanation_of_refinements: Optional[str] = None | |
raw_content: Optional[str] = None | |
class PromptRefiner: | |
def __init__(self, api_token: str): | |
self.client = InferenceClient(token=api_token, timeout=300) | |
self.meta_prompts = { | |
"morphosis": original_meta_prompt, | |
"verse": new_meta_prompt, | |
"physics": metaprompt1, | |
"bolism": loic_metaprompt, | |
"done": metadone, | |
"star": echo_prompt_refiner, | |
"math": math_meta_prompt, | |
"arpe": autoregressive_metaprompt | |
} | |
def refine_prompt(self, prompt_input: PromptInput) -> tuple: | |
try: | |
# Select meta prompt using dictionary instead of if-elif chain | |
selected_meta_prompt = self.meta_prompts.get( | |
prompt_input.meta_prompt_choice, | |
advanced_meta_prompt | |
) | |
messages = [ | |
{ | |
"role": "system", | |
"content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.' | |
}, | |
{ | |
"role": "user", | |
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text) | |
} | |
] | |
response = self.client.chat_completion( | |
model=prompt_refiner_model, | |
messages=messages, | |
max_tokens=3000, | |
temperature=0.8 | |
) | |
response_content = response.choices[0].message.content.strip() | |
# Parse the response | |
result = self._parse_response(response_content) | |
return ( | |
result.get('initial_prompt_evaluation', ''), | |
result.get('refined_prompt', ''), | |
result.get('explanation_of_refinements', ''), | |
result | |
) | |
except HfHubHTTPError as e: | |
return ( | |
"Error: Model timeout. Please try again later.", | |
"The selected model is currently experiencing high traffic.", | |
"The selected model is currently experiencing high traffic.", | |
{} | |
) | |
except Exception as e: | |
return ( | |
f"Error: {str(e)}", | |
"", | |
"An unexpected error occurred.", | |
{} | |
) | |
def _parse_response(self, response_content: str) -> dict: | |
try: | |
# Try to find JSON in response | |
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL) | |
if json_match: | |
json_str = json_match.group(1) | |
json_str = re.sub(r'\n\s*', ' ', json_str) | |
json_str = json_str.replace('"', '\\"') | |
json_output = json.loads(f'"{json_str}"') | |
if isinstance(json_output, str): | |
json_output = json.loads(json_output) | |
output={ | |
key: value.replace('\\"', '"') if isinstance(value, str) else value | |
for key, value in json_output.items() | |
} | |
output['response_content']=json_output | |
# Clean up JSON values | |
return output | |
# Fallback to regex parsing if no JSON found | |
output = {} | |
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]: | |
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})' | |
match = re.search(pattern, response_content, re.DOTALL) | |
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"') if match else "" | |
output['response_content']=response_content | |
return output | |
except (json.JSONDecodeError, ValueError) as e: | |
print(f"Error parsing response: {e}") | |
print(f"Raw content: {response_content}") | |
return { | |
"initial_prompt_evaluation": "Error parsing response", | |
"refined_prompt": "", | |
"explanation_of_refinements": str(e), | |
'response_content':str(e) | |
} | |
def apply_prompt(self, prompt: str, model: str) -> str: | |
try: | |
messages = [ | |
{ | |
"role": "system", | |
"content": """You are a markdown formatting expert. Format your responses with proper spacing and structure following these rules: | |
1. Paragraph Spacing: | |
- Add TWO blank lines between major sections (##) | |
- Add ONE blank line between subsections (###) | |
- Add ONE blank line between paragraphs within sections | |
- Add ONE blank line before and after lists | |
- Add ONE blank line before and after code blocks | |
- Add ONE blank line before and after blockquotes | |
2. Section Formatting: | |
# Title | |
## Major Section | |
[blank line] | |
Content paragraph 1 | |
[blank line] | |
Content paragraph 2 | |
[blank line] | |
### Subsection | |
[blank line] | |
Content | |
[blank line] | |
3. List Formatting: | |
[blank line] | |
- List item 1 | |
- List item 2 | |
- List item 3 | |
[blank line] | |
4. JSON Output Structure: | |
{ | |
"section_name": " | |
Content paragraph 1 | |
Content paragraph 2 | |
- List item 1 | |
- List item 2 | |
" | |
} | |
Transform content while maintaining clear visual separation between elements. Each logical section should be clearly distinguished with appropriate spacing.""" | |
}, | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
] | |
''' messages = [ | |
{ | |
"role": "system", | |
"content": """You are a professional markdown formatting expert. Transform any content into well-structured documentation following these precise rules: | |
1. Document Structure: | |
- Start with # for main title | |
- Use ## for major sections | |
- Use ### for subsections | |
- Add > blockquote for key summaries or important notes | |
- Separate major sections with --- | |
2. Content Types: | |
Technical: | |
- Use ```language for code blocks | |
- Format inline code with `backticks` | |
- Use $$ $$ for math equations | |
- Create tables for comparisons or data | |
- Use bullet points for features/characteristics | |
Narrative: | |
- Format dialogue with proper quotations | |
- Use *italics* for emphasis | |
- Keep paragraphs focused and concise | |
Instructional: | |
- Use numbered lists for steps | |
- Bold key terms with **emphasis** | |
- Add examples in code blocks | |
- Use tables for parameter explanations | |
3. Visual Organization: | |
- Maximum 3 levels of headers | |
- Short paragraphs (3-5 sentences) | |
- Consistent spacing between sections | |
- Clear hierarchy in information | |
- Strategic use of line breaks | |
4. Special Elements: | |
- Tables for structured comparisons | |
- Fenced code blocks with language specification | |
- Blockquotes for summaries/key points | |
- Lists only when necessary | |
- LaTeX for mathematical notation | |
Transform the content while maintaining clarity, professionalism, and readability. Focus on creating a logical flow that enhances understanding.""" | |
}, | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
]''' | |
response = self.client.chat_completion( | |
model=model, | |
messages=messages, | |
max_tokens=3000, | |
temperature=0.8 | |
) | |
output = response.choices[0].message.content.strip() | |
return output.replace('\n\n', '\n').strip() | |
except Exception as e: | |
return f"Error: {str(e)}" | |
class GradioInterface: | |
def __init__(self, prompt_refiner: PromptRefiner,custom_css): | |
self.prompt_refiner = prompt_refiner | |
custom_css = custom_css | |
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface: | |
with gr.Column(elem_classes=["container", "title-container"]): | |
gr.Markdown("# PROMPT++") | |
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts") | |
gr.Markdown("Learn how to generate an improved version of your prompts.") | |
with gr.Column(elem_classes=["container", "input-container"]): | |
prompt_text = gr.Textbox( | |
label="Type your prompt (or let it empty to see metaprompt)", | |
# elem_classes="no-background", | |
#elem_classes="container2", | |
lines=5 | |
) | |
meta_prompt_choice = gr.Radio( | |
["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"], | |
label="Choose Meta Prompt", | |
value="star", | |
elem_classes=["no-background", "radio-group"] | |
# elem_classes=[ "radio-group"] | |
) | |
refine_button = gr.Button("Refine Prompt") | |
# Option 1: Put Examples here (before Meta Prompt explanation) | |
with gr.Row(elem_classes=["container2"]): | |
with gr.Accordion("Examples", open=False): | |
gr.Examples( | |
examples=[ | |
["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"], | |
["Tell me about that guy who invented the light bulb", "physics"], | |
["Explain the universe.", "star"], | |
["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"], | |
["List American presidents.", "verse"], | |
["Explain why the experiment failed.", "morphosis"], | |
["Is nuclear energy good?", "verse"], | |
["How does a computer work?", "phor"], | |
["How to make money fast?", "done"], | |
["how can you prove IT0's lemma in stochastic calculus ?", "arpe"], | |
], | |
inputs=[prompt_text, meta_prompt_choice] | |
) | |
with gr.Accordion("Meta Prompt explanation", open=False): | |
gr.Markdown(explanation_markdown) | |
# Option 2: Or put Examples here (after the button) | |
# with gr.Accordion("Examples", open=False): | |
# gr.Examples(...) | |
with gr.Column(elem_classes=["container", "analysis-container"]): | |
gr.Markdown(' ') | |
gr.Markdown("### Initial prompt analysis") | |
analysis_evaluation = gr.Markdown() | |
gr.Markdown("### Refined Prompt") | |
refined_prompt = gr.Textbox( | |
label="Refined Prompt", | |
interactive=True, | |
show_label=True, # Must be True for copy button to show | |
show_copy_button=True, # Adds the copy button | |
# elem_classes="no-background" | |
) | |
gr.Markdown("### Explanation of Refinements") | |
explanation_of_refinements = gr.Markdown() | |
with gr.Column(elem_classes=["container", "model-container"]): | |
# gr.Markdown("## See MetaPrompt Impact") | |
with gr.Row(): | |
apply_model = gr.Dropdown(models, | |
value="meta-llama/Llama-3.1-8B-Instruct", | |
label="Choose the Model", | |
container=False, # This removes the container around the dropdown | |
scale=1, # Controls the width relative to other components | |
min_width=300 # Sets minimum width in pixels | |
# elem_classes="no-background" | |
) | |
apply_button = gr.Button("Apply MetaPrompt") | |
# with gr.Column(elem_classes=["container", "results-container"]): | |
gr.Markdown("### Prompts on choosen model") | |
with gr.Tabs(): | |
with gr.TabItem("Original Prompt Output"): | |
original_output = gr.Markdown() | |
with gr.TabItem("Refined Prompt Output"): | |
refined_output = gr.Markdown() | |
with gr.Accordion("Full Response JSON", open=False, visible=True): | |
full_response_json = gr.JSON() | |
refine_button.click( | |
fn=self.refine_prompt, | |
inputs=[prompt_text, meta_prompt_choice], | |
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json] | |
) | |
apply_button.click( | |
fn=self.apply_prompts, | |
inputs=[prompt_text, refined_prompt, apply_model], | |
outputs=[original_output, refined_output] | |
) | |
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple: | |
input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice) | |
# Since result is a tuple with 4 elements based on the return value of prompt_refiner.refine_prompt | |
initial_prompt_evaluation, refined_prompt, explanation_refinements, full_response = self.prompt_refiner.refine_prompt(input_data) | |
analysis_evaluation = f"\n\n{initial_prompt_evaluation}" | |
return ( | |
analysis_evaluation, | |
refined_prompt, | |
explanation_refinements, | |
full_response | |
) | |
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str): | |
original_output = self.prompt_refiner.apply_prompt(original_prompt, model) | |
refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model) | |
return original_output, refined_output | |
def launch(self, share=False): | |
self.interface.launch(share=share) | |
#explanation_markdown = "".join([f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items()]) | |
''' | |
meta_info="" | |
api_token = os.getenv('HF_API_TOKEN') | |
if not api_token: | |
raise ValueError("HF_API_TOKEN not found in environment variables") | |
metadone = os.getenv('metadone') | |
prompt_refiner_model = os.getenv('prompt_refiner_model') | |
echo_prompt_refiner = os.getenv('echo_prompt_refiner') | |
metaprompt1 = os.getenv('metaprompt1') | |
loic_metaprompt = os.getenv('loic_metaprompt') | |
openai_metaprompt = os.getenv('openai_metaprompt') | |
original_meta_prompt = os.getenv('original_meta_prompt') | |
new_meta_prompt = os.getenv('new_meta_prompt') | |
advanced_meta_prompt = os.getenv('advanced_meta_prompt') | |
math_meta_prompt = os.getenv('metamath') | |
autoregressive_metaprompt = os.getenv('autoregressive_metaprompt') | |
''' | |
if __name__ == '__main__': | |
prompt_refiner = PromptRefiner(api_token) | |
gradio_interface = GradioInterface(prompt_refiner,custom_css) | |
gradio_interface.launch(share=True) |