Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -106,7 +106,7 @@ class GradioInterface:
|
|
106 |
|
107 |
# Define custom CSS for containers
|
108 |
custom_css = """
|
109 |
-
.
|
110 |
border: 2px solid var(--primary-500);
|
111 |
border-radius: 10px;
|
112 |
padding: 20px;
|
@@ -116,19 +116,8 @@ class GradioInterface:
|
|
116 |
position: relative;
|
117 |
}
|
118 |
|
119 |
-
.
|
120 |
-
content:
|
121 |
-
position: absolute;
|
122 |
-
top: -12px;
|
123 |
-
left: 20px;
|
124 |
-
background: var(--background-fill-primary);
|
125 |
-
padding: 0 10px;
|
126 |
-
color: var(--primary-500);
|
127 |
-
font-weight: bold;
|
128 |
-
}
|
129 |
-
|
130 |
-
.output-container::before {
|
131 |
-
content: 'Output Section';
|
132 |
position: absolute;
|
133 |
top: -12px;
|
134 |
left: 20px;
|
@@ -136,16 +125,21 @@ class GradioInterface:
|
|
136 |
padding: 0 10px;
|
137 |
color: var(--primary-500);
|
138 |
font-weight: bold;
|
|
|
139 |
}
|
140 |
"""
|
141 |
|
142 |
with gr.Blocks(css=custom_css) as self.interface:
|
143 |
-
|
144 |
-
gr.
|
145 |
-
|
|
|
|
|
|
|
146 |
|
147 |
# Input Container
|
148 |
-
with gr.Column(elem_classes="input-container"):
|
|
|
149 |
gr.Markdown("## Refine Prompt")
|
150 |
with gr.Row():
|
151 |
prompt_text = gr.Textbox(label="Type the prompt (or let it empty to see metaprompt)")
|
@@ -159,8 +153,9 @@ class GradioInterface:
|
|
159 |
)
|
160 |
refine_button = gr.Button("Refine Prompt")
|
161 |
|
162 |
-
#
|
163 |
-
with gr.Column(elem_classes="
|
|
|
164 |
with gr.Row():
|
165 |
gr.Markdown("### Initial prompt analysis")
|
166 |
with gr.Column():
|
@@ -179,8 +174,9 @@ class GradioInterface:
|
|
179 |
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
|
180 |
)
|
181 |
|
182 |
-
# Model Application
|
183 |
-
with gr.Column(elem_classes="
|
|
|
184 |
gr.Markdown("## See MetaPrompt Impact")
|
185 |
with gr.Row():
|
186 |
apply_model = gr.Dropdown(
|
@@ -199,7 +195,8 @@ class GradioInterface:
|
|
199 |
apply_button = gr.Button("Apply MetaPrompt")
|
200 |
|
201 |
# Results Container
|
202 |
-
with gr.Column(elem_classes="
|
|
|
203 |
with gr.Tab("Original Prompt Output"):
|
204 |
original_output = gr.Markdown(label="Original Prompt Output")
|
205 |
with gr.Tab("Refined Prompt Output"):
|
@@ -211,23 +208,25 @@ class GradioInterface:
|
|
211 |
outputs=[original_output, refined_output]
|
212 |
)
|
213 |
|
214 |
-
# Examples
|
215 |
-
with gr.
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
[
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
231 |
|
232 |
# Rest of the class methods remain the same
|
233 |
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
|
|
|
106 |
|
107 |
# Define custom CSS for containers
|
108 |
custom_css = """
|
109 |
+
.container {
|
110 |
border: 2px solid var(--primary-500);
|
111 |
border-radius: 10px;
|
112 |
padding: 20px;
|
|
|
116 |
position: relative;
|
117 |
}
|
118 |
|
119 |
+
.container::before {
|
120 |
+
content: attr(data-title);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
position: absolute;
|
122 |
top: -12px;
|
123 |
left: 20px;
|
|
|
125 |
padding: 0 10px;
|
126 |
color: var(--primary-500);
|
127 |
font-weight: bold;
|
128 |
+
font-size: 1.2em;
|
129 |
}
|
130 |
"""
|
131 |
|
132 |
with gr.Blocks(css=custom_css) as self.interface:
|
133 |
+
# Title Container
|
134 |
+
with gr.Column(elem_classes="container", elem_id="title-container") as title_container:
|
135 |
+
title_container.dataset["title"] = "PROMPT++"
|
136 |
+
gr.Markdown("# PROMPT++")
|
137 |
+
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
|
138 |
+
gr.Markdown("Learn how to generate an improved version of your prompts. Enter a main idea for a prompt, choose a meta prompt, and the model will attempt to generate an improved version.")
|
139 |
|
140 |
# Input Container
|
141 |
+
with gr.Column(elem_classes="container", elem_id="input-container") as input_container:
|
142 |
+
input_container.dataset["title"] = "PROMPT REFINEMENT"
|
143 |
gr.Markdown("## Refine Prompt")
|
144 |
with gr.Row():
|
145 |
prompt_text = gr.Textbox(label="Type the prompt (or let it empty to see metaprompt)")
|
|
|
153 |
)
|
154 |
refine_button = gr.Button("Refine Prompt")
|
155 |
|
156 |
+
# Analysis Container
|
157 |
+
with gr.Column(elem_classes="container", elem_id="analysis-container") as analysis_container:
|
158 |
+
analysis_container.dataset["title"] = "ANALYSIS & REFINEMENT"
|
159 |
with gr.Row():
|
160 |
gr.Markdown("### Initial prompt analysis")
|
161 |
with gr.Column():
|
|
|
174 |
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
|
175 |
)
|
176 |
|
177 |
+
# Model Application Container
|
178 |
+
with gr.Column(elem_classes="container", elem_id="model-container") as model_container:
|
179 |
+
model_container.dataset["title"] = "MODEL APPLICATION"
|
180 |
gr.Markdown("## See MetaPrompt Impact")
|
181 |
with gr.Row():
|
182 |
apply_model = gr.Dropdown(
|
|
|
195 |
apply_button = gr.Button("Apply MetaPrompt")
|
196 |
|
197 |
# Results Container
|
198 |
+
with gr.Column(elem_classes="container", elem_id="results-container") as results_container:
|
199 |
+
results_container.dataset["title"] = "RESULTS"
|
200 |
with gr.Tab("Original Prompt Output"):
|
201 |
original_output = gr.Markdown(label="Original Prompt Output")
|
202 |
with gr.Tab("Refined Prompt Output"):
|
|
|
208 |
outputs=[original_output, refined_output]
|
209 |
)
|
210 |
|
211 |
+
# Examples Container
|
212 |
+
with gr.Column(elem_classes="container", elem_id="examples-container") as examples_container:
|
213 |
+
examples_container.dataset["title"] = "EXAMPLES"
|
214 |
+
with gr.Accordion("Examples", open=True):
|
215 |
+
gr.Examples(
|
216 |
+
examples=[
|
217 |
+
["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"],
|
218 |
+
["Tell me about that guy who invented the light bulb", "physics"],
|
219 |
+
["Explain the universe.", "star"],
|
220 |
+
["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
|
221 |
+
["List American presidents.", "verse"],
|
222 |
+
["Explain why the experiment failed.", "morphosis"],
|
223 |
+
["Is nuclear energy good?", "verse"],
|
224 |
+
["How does a computer work?", "phor"],
|
225 |
+
["How to make money fast?", "done"],
|
226 |
+
["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
|
227 |
+
],
|
228 |
+
inputs=[prompt_text, meta_prompt_choice]
|
229 |
+
)
|
230 |
|
231 |
# Rest of the class methods remain the same
|
232 |
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
|