""" Script to translate given single english audio file to corresponding hindi text Usage : python s2t_en2hi.py """ import gradio as gr import sys import os import subprocess from pydub import AudioSegment from huggingface_hub import snapshot_download def install_fairseq(): try: # Run pip install command to install fairseq subprocess.check_call(["pip", "install", "fairseq"]) subprocess.check_call(["pip", "install", "sentencepiece"]) subprocess.check_call(["pip", "install", "soundfile"]) return "fairseq successfully installed!" except subprocess.CalledProcessError as e: return f"An error occurred while installing fairseq: {str(e)}" def convert_audio_to_16k_wav(audio_input): sound = AudioSegment.from_file(audio_input) sample_rate = sound.frame_rate num_channels = sound.channels num_frames = int(sound.frame_count()) filename = audio_input.split("/")[-1] print("original file is at:", audio_input) if (num_channels > 1) or (sample_rate != 16000): # convert to mono-channel 16k wav if num_channels > 1: sound = sound.set_channels(1) if sample_rate != 16000: sound = sound.set_frame_rate(16000) num_frames = int(sound.frame_count()) filename = filename.replace(".wav", "") + "_16k.wav" sound.export(f"{filename}", format="wav") return filename def run_my_code(input_text, language): # TODO better argument handling audio=convert_audio_to_16k_wav(input_text) hi_wav = audio data_root="" model_checkpoint="" d_r="" if(language=="Hindi"): model_checkpoint = "./models/hi_m.pt" data_root="./lang/hi/" if(language=="Gujrati"): model_checkpoint = "./models/gj_m.pt" data_root="./lang/gj/" if(language=="Bengali"): model_checkpoint = "./models/bn_m.pt" data_root="./lang/bn/" if(language=="Nepali"): model_checkpoint = "./models/ne_m.pt" data_root="./lang/ne/" if(language=="Tamil"): model_checkpoint = "./models/tm_m.pt" data_root="./lang/tm/" if(language=="Marathi"): model_checkpoint = "./models/mt_m.pt" data_root="./lang/mt/" #os.system(f"cp {hi_wav} {data_root}data/tst-COMMON/wav/test.wav") f = open('input.txt', 'w') f.write(hi_wav) f = open('input.txt', 'r') content = f. read() print(content) print(hi_wav) print("------Performing translation...") #subprocess.run(["fairseq-interactive", data_root, "--config-yaml", "config_st.yaml", "--task", "speech_to_text", "--path", model_checkpoint, "--max-tokens", "50000", "--beam", "5" ,"--input" ,"input.txt"]) translation_result = subprocess.run(["fairseq-interactive", data_root, "--config-yaml", "config_st.yaml", "--task", "speech_to_text", "--path", model_checkpoint, "--max-tokens", "50000", "--beam", "5" ,"--input" ,"input.txt"], capture_output=True, text=True) translation_result_text = translation_result.stdout lines = translation_result_text.split("\n") output_text="" print("\n\n------Translation results are:") for i in lines: if (i.startswith("D-0")): print(i.split("\t")[2]) output_text=i.split("\t")[2] break #os.system(f"rm {data_root}data/tst-COMMON/wav/test.wav") f = open('input.txt', 'w') f.write("") f = open('input.txt', 'r') content = f. read() print(content) return output_text install_fairseq() # Define the input and output interfaces for Gradio #inputs = [ # gr.inputs.Audio(source="microphone", type="filepath", label="Record something (in English)..."), # gr.inputs.Dropdown(list(LANGUAGE_CODES.keys()), default="Hindi", label="From English to Languages X..."), # ] #input_textbox = gr.inputs.Textbox(label="test2.wav") #input=gr.inputs.Audio(source="microphone", type="filepath", label="Record something (in English)...") #audio=convert_audio_to_16k_wav(input) output_textbox = gr.outputs.Textbox(label="Translated Text") # Create a Gradio interface iface = gr.Interface( fn=run_my_code, inputs=[gr.inputs.Audio(source="microphone", type="filepath", label="Record something (in American English accent)"), gr.inputs.Radio(["Hindi", "Gujrati", "Bengali", "Tamil", "Nepali", "Marathi"], label="Language")], outputs=output_textbox, theme="soft", title="English to Indic Language Translator") # Launch the interface iface.launch()