XciD's picture
XciD HF staff
initial commit
8969f81
<header>
<img class="logo" src="/front/assets/unicorn-tweaked.svg">
<div class="title">
Write With Transformer
</div>
<div class="tagline">
Get a modern neural network to<br>auto-complete your thoughts.
</div>
</header>
<div class="section-models">
<div class="container">
<div class="description">
This web app, built by the Hugging Face team, is the official demo of the
<a href="https://github.com/huggingface/transformers"><code>๐Ÿค—/transformers</code></a>
repository's text generation capabilities.
</div>
<div class="github-repo">
<a
class="github-button"
href="https://github.com/huggingface/transformers" data-size="large" data-show-count="true" aria-label="Star huggingface/transformers on GitHub">
Star
</a>
</div>
<div class="title-section">Models</div>
<div class="model" data-tilt>
<div class="model-title">๐Ÿฆ„ GPT-2</div>
<div class="model-details">
The almighty king of text generation, GPT-2 comes in four available sizes, only three of which have been publicly made available. Feared for its fake news generation capabilities,
it currently stands as the most syntactically coherent model. A direct successor to the original GPT, it reinforces the already established pre-training/fine-tuning killer duo.
From the paper: Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
</div>
<div class="model-bottom">
<a class="btn btn-primary" href="/doc/gpt2-large">Start writing</a>
</div>
</div>
<div class="model" data-tilt>
<div class="model-title">๐Ÿ’ฏ XLNet</div>
<div class="model-details">
Overcoming the unidirectional limit while maintaining an independent masking algorithm based on permutation, XLNet improves upon the state-of-the-art autoregressive model that is TransformerXL. Using a bidirectional context while keeping its autoregressive approach, this model outperforms BERT on 20 tasks while keeping an impressive generative coherence.
From the paper: XLNet: Generalized Autoregressive Pretraining for Language Understanding, by Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov and Quoc V. Le.
</div>
<div class="model-bottom">
<a class="btn btn-primary" href="/doc/xlnet">Start writing</a>
</div>
</div>
<div class="model" data-tilt>
<div class="model-title">โ˜ ๏ธ GPT</div>
<div class="model-details">
Released by OpenAI, this seminal architecture has shown that large gains on several NLP tasks can be achieved by generative pre-training a language model
on unlabeled text before fine-tuning it on a downstream task.
From the paper: Improving Language Understanding by Generative Pre-Training, by Alec Radford, Karthik Naraimhan, Tim Salimans and Ilya Sutskever.
</div>
<div class="model-bottom">
<a class="btn btn-primary" href="/doc/gpt">Start writing</a>
</div>
</div>
<a href="/model/distil-gpt2">
<div class="model" data-tilt>
<div class="model-title">๐ŸŽ DistilGPT-2</div>
<div class="model-details">
The student of the now ubiquitous GPT-2 does not come short of its teacherโ€™s expectations.
Obtained by distillation, DistilGPT-2 weighs 37% less, and is twice as fast as its OpenAI counterpart, while keeping the same generative power.
Runs smoothly on an iPhone 7. The dawn of lightweight generative <br>transformers?
</div>
<div class="model-bottom">
<a class="btn btn-details" href="/model/distil-gpt2">More info</a>
<a class="btn btn-primary" href="/doc/distil-gpt2">Start writing</a>
</div>
</div>
</a>
<a href="/model/arxiv-nlp">
<div class="model" data-tilt>
<div class="model-title">๐Ÿค“ Arxiv-NLP</div>
<div class="model-details">
Built on the OpenAI GPT-2 model, the Hugging Face team has fine-tuned the small version on a tiny dataset (60MB of text) of Arxiv papers.
The targeted subject is Natural Language Processing, resulting in a very Linguistics/Deep Learning oriented generation.
</div>
<div class="model-bottom">
<a class="btn btn-details" href="/model/arxiv-nlp">More info</a>
<a class="btn btn-primary" href="/doc/arxiv-nlp">Start writing</a>
</div>
</div>
</a>
<div class="description">
Do you want to contribute or suggest a new model checkpoint? Open an issue on
<a href="https://github.com/huggingface/transformers"><code>๐Ÿค—/transformers</code></a> ๐Ÿ”ฅ.
</div>
<div class="quote">
โ€œIt is to writing what calculators are to calculus.โ€
</div>
</div>
</div>
<div class="section-footer">
<div class="container">
<div class="title">
Latest featured public documents
</div>
<ul class="documents">
{{#each docs}}
<li>
<a target="_blank" href="/share/{{this.shortId}}">{{ this.title }}</a>
</li>
{{else}}
<li>
<a target="_blank">None yet</a>
</li>
{{/each}}
</ul>
</div>
</div>