Spaces:
Sleeping
Sleeping
File size: 11,563 Bytes
e4bf926 b7ebf4b e4bf926 b7ebf4b e4bf926 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
from enum import Enum
import numpy as np
import gradio as gr
import torch
from PIL import Image
from transformers import DPTImageProcessor, DPTForDepthEstimation
from typing import List, Tuple
import random
from PIL import ImageDraw, ImageFont
from gradio.components import Image as grImage
import mediapipe as mp
processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
detector = mp.solutions.face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5)
class Placement(Enum):
CENTER = 0
TOP = 1
class FaceKeypointsLabel(Enum):
OTHER = 0
NOSE = 1
class Keypoints:
def __init__(self, x: float, y: float, label: FaceKeypointsLabel):
"""
:param x: x coordinate of the keypoint, normalized between 0 and 1
:param y: y coordinate of the keypoint, normalized between 0 and 1
"""
self.x = x
self.y = y
self.label = label
class BoundingBox:
def __init__(self, x_min: int, y_min: int, width: int, height: int):
self.x_min = x_min
self.y_min = y_min
self.width = width
self.height = height
class FaceDetectionResult:
"""
A class to represent the result of a face detection
"""
def __init__(self, bounding_box : BoundingBox, keypoints: List[Keypoints]):
self.bounding_box = bounding_box
self.keypoints = keypoints
def detect_face(image: Image) -> List[any]:
"""
Use mediapipe to detect faces in an image
"""
result = detector.process(np.array(image))
if result.detections is None:
return []
return result.detections
def predict_depth(image: Image) -> np.ndarray:
"""
Predict depth for an image
"""
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# Interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
output = prediction.squeeze().cpu().numpy()
return (output * 255 / np.max(output)).astype("uint8")
def estimate_depth_at_points(depth_map: np.ndarray, coordinates: List[Tuple[int, int]]) -> List[float]:
"""
Get the depth at a given coordinates
"""
depth_estimates = []
# Iterate through the given coordinates and estimate depth at each point
for x, y in coordinates:
depth_estimate = depth_map[y, x] # Access depth at the given point
depth_estimates.append(depth_estimate)
return depth_estimates
class Person:
"""
A class to represent a person in an image
"""
def __init__(self, nose_x: int, nose_y: int, head_width: int, head_height: int, middle_top_head_x: int, middle_top_head_y: int):
self.nose_x = nose_x
self.nose_y = nose_y
self.head_width = head_width
self.head_height = head_height
self.middle_top_head_x = middle_top_head_x
self.middle_top_head_y = middle_top_head_y
self.nose_width = int(head_width / 5)
self.nose_height = int(head_height / 3)
def extract_persons(face_detection_results: List[FaceDetectionResult], image: Image) -> List[Person]:
"""
Extract a list of people from a face detection result
"""
persons = []
for face_result in face_detection_results:
bbox = face_result.bounding_box
keypoints = face_result.keypoints
# Assuming the nose is the first keypoint in the list.
# You might need to adjust this based on how keypoints are ordered.
for keypoint in keypoints:
if keypoint.label == FaceKeypointsLabel.NOSE:
nose_keypoint = keypoint
break
nose_x = int(nose_keypoint.x * image.width)
nose_y = int(nose_keypoint.y * image.height)
# Bounding box details
middle_top_head_x = int(bbox.x_min + bbox.width // 2)
middle_top_head_y = bbox.y_min
head_width = bbox.width
head_height = bbox.height
# Create and add Person object
person = Person(nose_x, nose_y, head_width, head_height, middle_top_head_x, middle_top_head_y)
persons.append(person)
return persons
def add_mask(image: Image, mask: Image, coordinate: Tuple[int, int], size: Tuple[int, int], placement: Placement) -> Image:
"""
Add a mask (a static image) to an image
"""
# maintain aspect ratio
if len(size) == 1:
height = mask.height
width = mask.width
ratio = height / width
size = (size[0], int(size[0] * ratio))
if placement == Placement.CENTER:
coordinate = (coordinate[0] - size[0] // 2, coordinate[1] - size[1] // 2)
elif placement == Placement.TOP:
coordinate = (coordinate[0] - size[0] // 2, coordinate[1] - size[1])
mask = mask.resize(size)
image.paste(mask, coordinate, mask)
return image
def draw_attributes(image: Image, persons: List[Person]) -> Image:
"""
Debug function to the face recognition attributes on an image
"""
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
for person in persons:
# Draw a circle at the nose position
draw.ellipse([(person.nose_x - 5, person.nose_y - 5), (person.nose_x + 5, person.nose_y + 5)], fill=(0, 255, 0))
# Draw the head rectangle
draw.rectangle([(person.middle_top_head_x - person.head_width // 2, person.middle_top_head_y),
(person.middle_top_head_x + person.head_width // 2, person.middle_top_head_y + person.head_height)],
outline=(0, 255, 0))
# Put text for dimensions
draw.text((person.middle_top_head_x, person.middle_top_head_y - 20), f"Width: {person.head_width}, Height: {person.head_height}", fill=(255, 255, 255), font=font)
# put location of nose
draw.text((person.nose_x, person.nose_y + 10), f"({person.nose_x}, {person.nose_y})", fill=(255, 255, 255), font=font)
# draw dot at middle top head
draw.ellipse([(person.middle_top_head_x - 5, person.middle_top_head_y - 5), (person.middle_top_head_x + 5, person.middle_top_head_y + 5)], fill=(255, 0, 0))
return image
def apply_reindeer_mask(image: Image, person: Person) -> Image:
"""
Apply a reindeer mask to a person in an image
"""
reindeer_nose = Image.open("mask/reindeer_nose.png")
reindeer_antlers = Image.open("mask/reindeer_antlers.png")
reindeer_nose_coordinate = (person.nose_x, person.nose_y)
reindeer_nose_size = (person.nose_height, person.nose_height)
image = add_mask(image, reindeer_nose, reindeer_nose_coordinate, reindeer_nose_size, Placement.CENTER)
reindeer_antlers_size = (person.head_width, )
reindeer_antlers_coordinate = (person.middle_top_head_x, person.middle_top_head_y)
image = add_mask(image, reindeer_antlers, reindeer_antlers_coordinate, reindeer_antlers_size, Placement.TOP)
return image
def apply_santa_hat_mask(image: Image, person: Person) -> Image:
"""
Apply a santa hat mask to a person in an image
"""
santa_hat = Image.open("mask/santa_hat.png")
santa_hat_size = (person.head_width, )
santa_hat_coordinate = (person.middle_top_head_x, person.middle_top_head_y)
image = add_mask(image, santa_hat, santa_hat_coordinate, santa_hat_size, Placement.TOP)
return image
def add_text(image: Image, text: str, font_size: int = 30) -> Image:
"""
Add text to an image
"""
draw = ImageDraw.Draw(image)
# Calculate text width and height for centering
text_width, text_height = draw.textsize(text)
text_x = (image.width - text_width) // 2
text_y = (image.height - text_height) // 2
draw.text((text_x, text_y), text, fill=(255, 0, 0))
return image
def apply_random_mask(image: Image, person: Person) -> Image:
"""
Apply a random mask to a person in an image
"""
mask = random.choice([apply_santa_hat_mask, apply_reindeer_mask])
image = mask(image, person)
return image
def process_image(image : Image):
"""
The full pipeline that take an image and returns an image with more christmas spirit :)
"""
# Potential improvement this could be done in parallel
depth_result = predict_depth(image)
detections = detect_face(image)
face_detection_results = parse_detection_result(detections, image)
persons = extract_persons(face_detection_results, image)
if len(persons) == 0:
return add_text(image, "No faces detected in the image")
if len(persons) == 1:
image = apply_random_mask(image,persons[0])
elif len(persons) > 1:
# Apply the rules of the assignment, closest person gets santa hat, furthest person gets reindeer mask
# All other people get a random mask (either santa hat or reindeer mask) (as this was not specified in the assignment)
depth_estimates = estimate_depth_at_points(depth_result, [(person.nose_x, person.nose_y) for person in persons])
closest_camera_index = np.argmin(depth_estimates)
furthest_camera_index = np.argmax(depth_estimates)
santa_person = persons[closest_camera_index]
reindeer_person = persons[furthest_camera_index]
image = apply_reindeer_mask(image, reindeer_person)
image = apply_santa_hat_mask(image, santa_person)
for i, person in enumerate(persons):
if i != closest_camera_index and i != furthest_camera_index:
image = apply_random_mask(image, person)
return image
def parse_detection_to_face_detection_result(detection, image_width: int, image_height: int) -> FaceDetectionResult:
"""
Parse a mediapipe detection to a FaceDetectionResult
"""
# Extract bounding box
bbox = detection.location_data.relative_bounding_box
x_min = int(bbox.xmin * image_width)
y_min = int(bbox.ymin * image_height)
width = int(bbox.width * image_width)
height = int(bbox.height * image_height)
bounding_box = BoundingBox(x_min, y_min, width, height)
# Extract keypoints
keypoints = []
for i, keypoint in enumerate(detection.location_data.relative_keypoints):
x = keypoint.x
y = keypoint.y
face_type = FaceKeypointsLabel.OTHER
if i == 2:
face_type = FaceKeypointsLabel.NOSE
keypoints.append(Keypoints(x, y, face_type))
return FaceDetectionResult(bounding_box, keypoints)
def parse_detection_result(detection_result, image: Image) -> List[FaceDetectionResult]:
"""
Parse a mediapipe detection result to a list of FaceDetectionResult
"""
face_detection_results = []
for detection in detection_result:
face_detection_result = parse_detection_to_face_detection_result(detection, image.width, image.height)
face_detection_results.append(face_detection_result)
return face_detection_results
def main():
# Remarks: the code is in one file for simplicity, but it would be better to split it up in multiple files
# Create a gradio interface
iface = gr.Interface(
fn=process_image,
inputs=grImage(type="pil"),
outputs=grImage(type="pil"),
title="Image Processor",
description="Upload an image to detect faces and apply transformations."
)
# Launch the interface
iface.launch()
if __name__ == "__main__":
main()
|