santa / app.py
baptistecolle's picture
first version
b7ebf4b unverified
raw
history blame
11.6 kB
from enum import Enum
import numpy as np
import gradio as gr
import torch
from PIL import Image
from transformers import DPTImageProcessor, DPTForDepthEstimation
from typing import List, Tuple
import random
from PIL import ImageDraw, ImageFont
from gradio.components import Image as grImage
import mediapipe as mp
processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
detector = mp.solutions.face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5)
class Placement(Enum):
CENTER = 0
TOP = 1
class FaceKeypointsLabel(Enum):
OTHER = 0
NOSE = 1
class Keypoints:
def __init__(self, x: float, y: float, label: FaceKeypointsLabel):
"""
:param x: x coordinate of the keypoint, normalized between 0 and 1
:param y: y coordinate of the keypoint, normalized between 0 and 1
"""
self.x = x
self.y = y
self.label = label
class BoundingBox:
def __init__(self, x_min: int, y_min: int, width: int, height: int):
self.x_min = x_min
self.y_min = y_min
self.width = width
self.height = height
class FaceDetectionResult:
"""
A class to represent the result of a face detection
"""
def __init__(self, bounding_box : BoundingBox, keypoints: List[Keypoints]):
self.bounding_box = bounding_box
self.keypoints = keypoints
def detect_face(image: Image) -> List[any]:
"""
Use mediapipe to detect faces in an image
"""
result = detector.process(np.array(image))
if result.detections is None:
return []
return result.detections
def predict_depth(image: Image) -> np.ndarray:
"""
Predict depth for an image
"""
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# Interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
output = prediction.squeeze().cpu().numpy()
return (output * 255 / np.max(output)).astype("uint8")
def estimate_depth_at_points(depth_map: np.ndarray, coordinates: List[Tuple[int, int]]) -> List[float]:
"""
Get the depth at a given coordinates
"""
depth_estimates = []
# Iterate through the given coordinates and estimate depth at each point
for x, y in coordinates:
depth_estimate = depth_map[y, x] # Access depth at the given point
depth_estimates.append(depth_estimate)
return depth_estimates
class Person:
"""
A class to represent a person in an image
"""
def __init__(self, nose_x: int, nose_y: int, head_width: int, head_height: int, middle_top_head_x: int, middle_top_head_y: int):
self.nose_x = nose_x
self.nose_y = nose_y
self.head_width = head_width
self.head_height = head_height
self.middle_top_head_x = middle_top_head_x
self.middle_top_head_y = middle_top_head_y
self.nose_width = int(head_width / 5)
self.nose_height = int(head_height / 3)
def extract_persons(face_detection_results: List[FaceDetectionResult], image: Image) -> List[Person]:
"""
Extract a list of people from a face detection result
"""
persons = []
for face_result in face_detection_results:
bbox = face_result.bounding_box
keypoints = face_result.keypoints
# Assuming the nose is the first keypoint in the list.
# You might need to adjust this based on how keypoints are ordered.
for keypoint in keypoints:
if keypoint.label == FaceKeypointsLabel.NOSE:
nose_keypoint = keypoint
break
nose_x = int(nose_keypoint.x * image.width)
nose_y = int(nose_keypoint.y * image.height)
# Bounding box details
middle_top_head_x = int(bbox.x_min + bbox.width // 2)
middle_top_head_y = bbox.y_min
head_width = bbox.width
head_height = bbox.height
# Create and add Person object
person = Person(nose_x, nose_y, head_width, head_height, middle_top_head_x, middle_top_head_y)
persons.append(person)
return persons
def add_mask(image: Image, mask: Image, coordinate: Tuple[int, int], size: Tuple[int, int], placement: Placement) -> Image:
"""
Add a mask (a static image) to an image
"""
# maintain aspect ratio
if len(size) == 1:
height = mask.height
width = mask.width
ratio = height / width
size = (size[0], int(size[0] * ratio))
if placement == Placement.CENTER:
coordinate = (coordinate[0] - size[0] // 2, coordinate[1] - size[1] // 2)
elif placement == Placement.TOP:
coordinate = (coordinate[0] - size[0] // 2, coordinate[1] - size[1])
mask = mask.resize(size)
image.paste(mask, coordinate, mask)
return image
def draw_attributes(image: Image, persons: List[Person]) -> Image:
"""
Debug function to the face recognition attributes on an image
"""
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
for person in persons:
# Draw a circle at the nose position
draw.ellipse([(person.nose_x - 5, person.nose_y - 5), (person.nose_x + 5, person.nose_y + 5)], fill=(0, 255, 0))
# Draw the head rectangle
draw.rectangle([(person.middle_top_head_x - person.head_width // 2, person.middle_top_head_y),
(person.middle_top_head_x + person.head_width // 2, person.middle_top_head_y + person.head_height)],
outline=(0, 255, 0))
# Put text for dimensions
draw.text((person.middle_top_head_x, person.middle_top_head_y - 20), f"Width: {person.head_width}, Height: {person.head_height}", fill=(255, 255, 255), font=font)
# put location of nose
draw.text((person.nose_x, person.nose_y + 10), f"({person.nose_x}, {person.nose_y})", fill=(255, 255, 255), font=font)
# draw dot at middle top head
draw.ellipse([(person.middle_top_head_x - 5, person.middle_top_head_y - 5), (person.middle_top_head_x + 5, person.middle_top_head_y + 5)], fill=(255, 0, 0))
return image
def apply_reindeer_mask(image: Image, person: Person) -> Image:
"""
Apply a reindeer mask to a person in an image
"""
reindeer_nose = Image.open("mask/reindeer_nose.png")
reindeer_antlers = Image.open("mask/reindeer_antlers.png")
reindeer_nose_coordinate = (person.nose_x, person.nose_y)
reindeer_nose_size = (person.nose_height, person.nose_height)
image = add_mask(image, reindeer_nose, reindeer_nose_coordinate, reindeer_nose_size, Placement.CENTER)
reindeer_antlers_size = (person.head_width, )
reindeer_antlers_coordinate = (person.middle_top_head_x, person.middle_top_head_y)
image = add_mask(image, reindeer_antlers, reindeer_antlers_coordinate, reindeer_antlers_size, Placement.TOP)
return image
def apply_santa_hat_mask(image: Image, person: Person) -> Image:
"""
Apply a santa hat mask to a person in an image
"""
santa_hat = Image.open("mask/santa_hat.png")
santa_hat_size = (person.head_width, )
santa_hat_coordinate = (person.middle_top_head_x, person.middle_top_head_y)
image = add_mask(image, santa_hat, santa_hat_coordinate, santa_hat_size, Placement.TOP)
return image
def add_text(image: Image, text: str, font_size: int = 30) -> Image:
"""
Add text to an image
"""
draw = ImageDraw.Draw(image)
# Calculate text width and height for centering
text_width, text_height = draw.textsize(text)
text_x = (image.width - text_width) // 2
text_y = (image.height - text_height) // 2
draw.text((text_x, text_y), text, fill=(255, 0, 0))
return image
def apply_random_mask(image: Image, person: Person) -> Image:
"""
Apply a random mask to a person in an image
"""
mask = random.choice([apply_santa_hat_mask, apply_reindeer_mask])
image = mask(image, person)
return image
def process_image(image : Image):
"""
The full pipeline that take an image and returns an image with more christmas spirit :)
"""
# Potential improvement this could be done in parallel
depth_result = predict_depth(image)
detections = detect_face(image)
face_detection_results = parse_detection_result(detections, image)
persons = extract_persons(face_detection_results, image)
if len(persons) == 0:
return add_text(image, "No faces detected in the image")
if len(persons) == 1:
image = apply_random_mask(image,persons[0])
elif len(persons) > 1:
# Apply the rules of the assignment, closest person gets santa hat, furthest person gets reindeer mask
# All other people get a random mask (either santa hat or reindeer mask) (as this was not specified in the assignment)
depth_estimates = estimate_depth_at_points(depth_result, [(person.nose_x, person.nose_y) for person in persons])
closest_camera_index = np.argmin(depth_estimates)
furthest_camera_index = np.argmax(depth_estimates)
santa_person = persons[closest_camera_index]
reindeer_person = persons[furthest_camera_index]
image = apply_reindeer_mask(image, reindeer_person)
image = apply_santa_hat_mask(image, santa_person)
for i, person in enumerate(persons):
if i != closest_camera_index and i != furthest_camera_index:
image = apply_random_mask(image, person)
return image
def parse_detection_to_face_detection_result(detection, image_width: int, image_height: int) -> FaceDetectionResult:
"""
Parse a mediapipe detection to a FaceDetectionResult
"""
# Extract bounding box
bbox = detection.location_data.relative_bounding_box
x_min = int(bbox.xmin * image_width)
y_min = int(bbox.ymin * image_height)
width = int(bbox.width * image_width)
height = int(bbox.height * image_height)
bounding_box = BoundingBox(x_min, y_min, width, height)
# Extract keypoints
keypoints = []
for i, keypoint in enumerate(detection.location_data.relative_keypoints):
x = keypoint.x
y = keypoint.y
face_type = FaceKeypointsLabel.OTHER
if i == 2:
face_type = FaceKeypointsLabel.NOSE
keypoints.append(Keypoints(x, y, face_type))
return FaceDetectionResult(bounding_box, keypoints)
def parse_detection_result(detection_result, image: Image) -> List[FaceDetectionResult]:
"""
Parse a mediapipe detection result to a list of FaceDetectionResult
"""
face_detection_results = []
for detection in detection_result:
face_detection_result = parse_detection_to_face_detection_result(detection, image.width, image.height)
face_detection_results.append(face_detection_result)
return face_detection_results
def main():
# Remarks: the code is in one file for simplicity, but it would be better to split it up in multiple files
# Create a gradio interface
iface = gr.Interface(
fn=process_image,
inputs=grImage(type="pil"),
outputs=grImage(type="pil"),
title="Image Processor",
description="Upload an image to detect faces and apply transformations."
)
# Launch the interface
iface.launch()
if __name__ == "__main__":
main()