import gradio as gr import torch from PIL import Image from run import StableRemix, run_remixing pipe = StableRemix.from_pretrained( "stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16" ) pipe = pipe.to('cuda') pipe.enable_attention_slicing() print('pipe loaded') def remix(image1, image2, alpha): # style_img = Image.open(args.style_img).convert('RGB') # images = run_remixing(pipe, image1, image1, [0.6, 0.65, 0.7]) images = run_remixing(pipe, image1, image2, [alpha]) return images[0] for idx, image in enumerate(images): path = args.save_dir / f'remix_{idx}.png' print('Saving remix to', path) image.save(path) demo = gr.Interface( fn=remix, inputs=[gr.Image(image_mode='RGB', shape=[512, 512]), gr.Image(image_mode='RGB', shape=[512, 512]), gr.Slider(0.0, 1.0, 0.6)], outputs="image") demo.launch()