Spaces:
Sleeping
Sleeping
"Client-server interface custom implementation for seizure detection models." | |
from common import SEIZURE_DETECTION_MODEL_PATH | |
from concrete import fhe | |
from seizure_detection import SeizureDetector | |
class FHEServer: | |
"""Server interface to run a FHE circuit for seizure detection.""" | |
def __init__(self, model_path): | |
"""Initialize the FHE interface. | |
Args: | |
model_path (Path): The path to the directory where the circuit is saved. | |
""" | |
self.model_path = model_path | |
# Load the FHE circuit | |
self.server = fhe.Server.load(self.model_path / "server.zip") | |
def run(self, serialized_encrypted_image, serialized_evaluation_keys): | |
"""Run seizure detection on the server over an encrypted image. | |
Args: | |
serialized_encrypted_image (bytes): The encrypted and serialized image. | |
serialized_evaluation_keys (bytes): The serialized evaluation keys. | |
Returns: | |
bytes: The encrypted boolean output indicating seizure detection. | |
""" | |
# Deserialize the encrypted input image and the evaluation keys | |
encrypted_image = fhe.Value.deserialize(serialized_encrypted_image) | |
evaluation_keys = fhe.EvaluationKeys.deserialize(serialized_evaluation_keys) | |
# Execute the seizure detection in FHE | |
encrypted_output = self.server.run(encrypted_image, evaluation_keys=evaluation_keys) | |
# Serialize the encrypted output | |
serialized_encrypted_output = encrypted_output.serialize() | |
return serialized_encrypted_output | |
class FHEDev: | |
"""Development interface to save and load the seizure detection model.""" | |
def __init__(self, seizure_detector, model_path): | |
"""Initialize the FHE interface. | |
Args: | |
seizure_detector (SeizureDetector): The seizure detection model to use in the FHE interface. | |
model_path (str): The path to the directory where the circuit is saved. | |
""" | |
self.seizure_detector = seizure_detector | |
self.model_path = model_path | |
self.model_path.mkdir(parents=True, exist_ok=True) | |
def save(self): | |
"""Export all needed artifacts for the client and server interfaces.""" | |
assert self.seizure_detector.fhe_circuit is not None, ( | |
"The model must be compiled before saving it." | |
) | |
# Save the circuit for the server, using the via_mlir in order to handle cross-platform | |
# execution | |
path_circuit_server = self.model_path / "server.zip" | |
self.seizure_detector.fhe_circuit.server.save(path_circuit_server, via_mlir=True) | |
# Save the circuit for the client | |
path_circuit_client = self.model_path / "client.zip" | |
self.seizure_detector.fhe_circuit.client.save(path_circuit_client) | |
class FHEClient: | |
"""Client interface to encrypt and decrypt FHE data associated to a SeizureDetector.""" | |
def __init__(self, key_dir=None): | |
"""Initialize the FHE interface. | |
Args: | |
model_path (Path): The path to the directory where the circuit is saved. | |
key_dir (Path): The path to the directory where the keys are stored. Default to None. | |
""" | |
self.model_path = SEIZURE_DETECTION_MODEL_PATH | |
self.key_dir = key_dir | |
# If model_path does not exist raise | |
assert self.model_path.exists(), f"{self.model_path} does not exist. Please specify a valid path." | |
# Load the client | |
self.client = fhe.Client.load(self.model_path / "client.zip", self.key_dir) | |
# Instantiate the seizure detector | |
self.seizure_detector = SeizureDetector() | |
def generate_private_and_evaluation_keys(self, force=False): | |
"""Generate the private and evaluation keys. | |
Args: | |
force (bool): If True, regenerate the keys even if they already exist. | |
""" | |
self.client.keygen(force) | |
def get_serialized_evaluation_keys(self): | |
"""Get the serialized evaluation keys. | |
Returns: | |
bytes: The evaluation keys. | |
""" | |
return self.client.evaluation_keys.serialize() | |
def encrypt_serialize(self, input_image): | |
"""Encrypt and serialize the input image in the clear. | |
Args: | |
input_image (numpy.ndarray): The image to encrypt and serialize. | |
Returns: | |
bytes: The pre-processed, encrypted and serialized image. | |
""" | |
# Encrypt the image | |
encrypted_image = self.client.encrypt(input_image) | |
# Serialize the encrypted image to be sent to the server | |
serialized_encrypted_image = encrypted_image.serialize() | |
return serialized_encrypted_image | |
def deserialize_decrypt_post_process(self, serialized_encrypted_output): | |
"""Deserialize, decrypt and post-process the output in the clear. | |
Args: | |
serialized_encrypted_output (bytes): The serialized and encrypted output. | |
Returns: | |
bool: The decrypted and deserialized boolean indicating seizure detection. | |
""" | |
# Deserialize the encrypted output | |
encrypted_output = fhe.Value.deserialize(serialized_encrypted_output) | |
# Decrypt the output | |
output = self.client.decrypt(encrypted_output) | |
# Post-process the output (if needed) | |
seizure_detected = self.seizure_detector.post_processing(output) | |
return seizure_detected | |