Spaces:
Sleeping
Sleeping
Revert "test without exec"
Browse filesThis reverts commit 7f467975c1508eb55afa74a02180964fb26ccd63.
- app.py +4 -25
- client_server_interface.py +3 -2
- server.py +11 -19
app.py
CHANGED
@@ -317,7 +317,8 @@ def decrypt_output(user_id):
|
|
317 |
user_id (int): The current user's ID.
|
318 |
|
319 |
Returns:
|
320 |
-
|
|
|
321 |
"""
|
322 |
if user_id == "":
|
323 |
raise gr.Error("Please generate the private key first.")
|
@@ -332,35 +333,13 @@ def decrypt_output(user_id):
|
|
332 |
with encrypted_output_path.open("rb") as encrypted_output_file:
|
333 |
encrypted_output = encrypted_output_file.read()
|
334 |
|
335 |
-
logger.debug(f"Encrypted output size: {len(encrypted_output)} bytes")
|
336 |
-
logger.debug(f"Encrypted output (first 100 bytes): {encrypted_output[:100].hex()}")
|
337 |
-
|
338 |
-
if not encrypted_output:
|
339 |
-
raise gr.Error("The encrypted output is empty. Please try running the FHE execution again.")
|
340 |
-
|
341 |
# Retrieve the client API
|
342 |
client = get_client(user_id)
|
343 |
|
344 |
# Deserialize, decrypt and post-process the encrypted output
|
345 |
-
|
346 |
-
decrypted_output = client.deserialize_decrypt_post_process(encrypted_output)
|
347 |
-
|
348 |
-
# The decrypted output should be a 1D array with 2 elements
|
349 |
-
if isinstance(decrypted_output, np.ndarray) and decrypted_output.shape == (2,):
|
350 |
-
predicted_class = np.argmax(decrypted_output)
|
351 |
-
confidence = decrypted_output[predicted_class]
|
352 |
-
result = "Seizure detected" if predicted_class == 1 else "No seizure detected"
|
353 |
-
return f"{result} (Confidence: {confidence:.2f})"
|
354 |
-
else:
|
355 |
-
logger.error(f"Unexpected decrypted output format: {decrypted_output}")
|
356 |
-
raise ValueError("Unexpected output format from the model")
|
357 |
|
358 |
-
|
359 |
-
logger.error(f"Error during deserialization: {str(e)}")
|
360 |
-
raise gr.Error("Failed to deserialize the encrypted output. The data might be corrupted or in an unexpected format.")
|
361 |
-
except Exception as e:
|
362 |
-
logger.error(f"Unexpected error during decryption: {str(e)}")
|
363 |
-
raise gr.Error(f"An unexpected error occurred during decryption: {str(e)}")
|
364 |
|
365 |
def resize_img(img, width=256, height=256):
|
366 |
"""Resize the image."""
|
|
|
317 |
user_id (int): The current user's ID.
|
318 |
|
319 |
Returns:
|
320 |
+
bool: The decrypted output (True if seizure detected, False otherwise)
|
321 |
+
|
322 |
"""
|
323 |
if user_id == "":
|
324 |
raise gr.Error("Please generate the private key first.")
|
|
|
333 |
with encrypted_output_path.open("rb") as encrypted_output_file:
|
334 |
encrypted_output = encrypted_output_file.read()
|
335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
# Retrieve the client API
|
337 |
client = get_client(user_id)
|
338 |
|
339 |
# Deserialize, decrypt and post-process the encrypted output
|
340 |
+
decrypted_output = client.deserialize_decrypt_post_process(encrypted_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
+
return "Seizure detected" if decrypted_output else "No seizure detected"
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
def resize_img(img, width=256, height=256):
|
345 |
"""Resize the image."""
|
client_server_interface.py
CHANGED
@@ -146,5 +146,6 @@ class FHEClient:
|
|
146 |
output = self.client.decrypt(encrypted_output)
|
147 |
|
148 |
# Post-process the output (if needed)
|
149 |
-
|
150 |
-
|
|
|
|
146 |
output = self.client.decrypt(encrypted_output)
|
147 |
|
148 |
# Post-process the output (if needed)
|
149 |
+
seizure_detected = self.seizure_detector.post_processing(output)
|
150 |
+
|
151 |
+
return seizure_detected
|
server.py
CHANGED
@@ -10,7 +10,6 @@ from fastapi.responses import JSONResponse, Response
|
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
11 |
|
12 |
from concrete.ml.deployment import FHEModelServer
|
13 |
-
import numpy as np
|
14 |
|
15 |
import gc
|
16 |
|
@@ -101,24 +100,17 @@ def run_fhe(user_id: str = Form()):
|
|
101 |
|
102 |
# Run the FHE execution
|
103 |
start = time.time()
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
# Placeholder output
|
117 |
-
# Generate a random 2-element array with values between 0 and 1
|
118 |
-
placeholder_output = np.random.rand(2)
|
119 |
-
# Ensure the sum of the two elements is 1 (to mimic softmax output)
|
120 |
-
placeholder_output = placeholder_output / np.sum(placeholder_output)
|
121 |
-
encrypted_output = placeholder_output.tobytes()
|
122 |
|
123 |
fhe_execution_time = round(time.time() - start, 2)
|
124 |
|
|
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
11 |
|
12 |
from concrete.ml.deployment import FHEModelServer
|
|
|
13 |
|
14 |
import gc
|
15 |
|
|
|
100 |
|
101 |
# Run the FHE execution
|
102 |
start = time.time()
|
103 |
+
try:
|
104 |
+
encrypted_output = FHE_SERVER.run(encrypted_image, evaluation_key)
|
105 |
+
except MemoryError:
|
106 |
+
logger.error("FHE execution failed due to insufficient memory")
|
107 |
+
raise HTTPException(status_code=503, detail="Insufficient memory during FHE execution")
|
108 |
+
except Exception as e:
|
109 |
+
logger.error(f"FHE execution failed: {str(e)}")
|
110 |
+
raise HTTPException(status_code=500, detail="FHE execution failed")
|
111 |
+
finally:
|
112 |
+
# Force garbage collection after FHE execution
|
113 |
+
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
fhe_execution_time = round(time.time() - start, 2)
|
116 |
|