Spaces:
Sleeping
Sleeping
Thomas Chardonnens
commited on
Commit
•
a4a31bd
1
Parent(s):
127130c
testing deployment with HFe
Browse files- requirements.txt +1 -0
- seizure_detection.py +39 -0
- seizure_detection/deployment/client.zip +3 -0
- seizure_detection/deployment/server.zip +3 -0
- server.py +1 -1
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
concrete-ml==1.1.0
|
2 |
gradio
|
|
|
|
1 |
concrete-ml==1.1.0
|
2 |
gradio
|
3 |
+
fastapi
|
seizure_detection.py
CHANGED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class SeizureDetectionCNN(nn.Module):
|
7 |
+
def __init__(self, num_classes=2):
|
8 |
+
super(SeizureDetectionCNN, self).__init__()
|
9 |
+
self.conv1= nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) # 32, 224, 224
|
10 |
+
|
11 |
+
self.pool= nn.MaxPool2d(kernel_size=2, stride=2) # 32, 112, 112
|
12 |
+
|
13 |
+
self.conv2= nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) # 64, 112, 112 -> 64, 56, 56
|
14 |
+
self.conv3= nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) # 128, 56, 56 -> 128, 28, 28
|
15 |
+
self.conv4= nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) # 256, 28, 28 -> 256, 14, 14
|
16 |
+
|
17 |
+
# Adding Batch Normalization
|
18 |
+
self.bn1 = nn.BatchNorm2d(32)
|
19 |
+
self.bn2 = nn.BatchNorm2d(64)
|
20 |
+
self.bn3 = nn.BatchNorm2d(128)
|
21 |
+
self.bn4 = nn.BatchNorm2d(256)
|
22 |
+
|
23 |
+
self.dropout = nn.Dropout(p=0.5) # Dropout with a probability of 50%
|
24 |
+
|
25 |
+
self.fc1= nn.Linear(256*14*14, 120)
|
26 |
+
self.fc2= nn.Linear(120, 32)
|
27 |
+
self.fc3= nn.Linear(32, num_classes)
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x = self.pool(F.relu(self.bn1(self.conv1(x)))) # 32, 112, 112
|
31 |
+
x = self.pool(F.relu(self.bn2(self.conv2(x)))) # 64, 56, 56
|
32 |
+
x = self.pool(F.relu(self.bn3(self.conv3(x)))) # 128, 28, 28
|
33 |
+
x = self.pool(F.relu(self.bn4(self.conv4(x)))) # 256, 14, 14
|
34 |
+
|
35 |
+
x = torch.flatten(x, 1)
|
36 |
+
x = self.dropout(F.relu(self.fc1(x))) # Apply dropout
|
37 |
+
x = self.dropout(F.relu(self.fc2(x))) # Apply dropout
|
38 |
+
x = self.fc3(x)
|
39 |
+
return x
|
seizure_detection/deployment/client.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8519d16d710945ce7470058a783984cffb8f2b1040283daec32e523d5c95736b
|
3 |
+
size 7408
|
seizure_detection/deployment/server.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ad7802d887e387740a2c89c04eb7ba4aafaddd62b3bbaa3a907c8657236ad76
|
3 |
+
size 1465254
|
server.py
CHANGED
@@ -9,7 +9,7 @@ from common import SERVER_TMP_PATH
|
|
9 |
from client_server_interface import FHEServer
|
10 |
|
11 |
# Load the server object for seizure detection
|
12 |
-
FHE_SERVER = FHEServer(model_path="
|
13 |
|
14 |
def get_server_file_path(name, user_id):
|
15 |
"""Get the correct temporary file path for the server.
|
|
|
9 |
from client_server_interface import FHEServer
|
10 |
|
11 |
# Load the server object for seizure detection
|
12 |
+
FHE_SERVER = FHEServer(model_path="ThomasCdnns/EEG-Seizure-Detection/resolve/main/seizure_detection_model-4.pth")
|
13 |
|
14 |
def get_server_file_path(name, user_id):
|
15 |
"""Get the correct temporary file path for the server.
|