Spaces:
Sleeping
Sleeping
File size: 2,908 Bytes
503c7ba 57403af 503c7ba 509940c 57403af 503c7ba e44d4e7 93de2ae e44d4e7 3b1de78 220185a 3b1de78 e44d4e7 93de2ae e44d4e7 afa7f02 503c7ba 57403af e44d4e7 57403af 8dca2bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
model_path = "DogClassifier2.2.keras"
model = tf.keras.models.load_model(model_path)
# Define the core prediction function
def predict_bmwX(image):
# Preprocess image
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
image = image.convert("RGB") # Ensure the image is in RGB format
image = image.resize((150, 150)) # Resize the image to 150x150
image = np.array(image)
image = np.expand_dims(image, axis=0) # Add batch dimension
# Predict
prediction = model.predict(image)
# Apply softmax to get probabilities for each class
prediction = tf.nn.softmax(prediction)
# Debug statement to check the shape of the prediction
print(f"Prediction shape: {prediction.shape}")
# Define class names
class_names = ['Afghan', 'African Wild Dog', 'Airedale', 'American Hairless', 'American Spaniel', 'Basenji', 'Basset', 'Beagle',
'Bearded Collie', 'Bermaise', 'Bichon Frise', 'Blenheim', 'Bloodhound', 'Bluetick', 'Border Collie', 'Borzoi',
'Boston Terrier', 'Boxer', 'Bull Mastiff', 'Bull Terrier', 'Bulldog', 'Cairn', 'Chihuahua', 'Chinese Crested',
'Chow', 'Clumber','Cockapoo', 'Cocker', 'Collie', 'Corgi', 'Coyote', 'Dalmation', 'Dhole', 'Dingo', 'Doberman',
'Elk Hound', 'French Bulldog', 'German Sheperd', 'Golden Retriever', 'Great Dane', 'Great Perenees', 'Greyhound',
'Groenendael', 'Irish Spaniel', 'Irish Wolfhound', 'Japanese Spaniel', 'Komondor', 'Labradoodle', 'Labrador',
'Lhasa', 'Malinois', 'Maltese', 'Mex Hairless', 'Newfoundland', 'Pekinese', 'Pit Bull', 'Pomeranian',
'Poodle', 'Pug', 'Rhodesian', 'Rottweiler', 'Saint Bernard', 'Schnauzer', 'Scotch Terrier', 'Shar_Pei',
'Shiba Inu', 'Shih-Tzu', 'Siberian Husky', 'Vizsla', 'Yorkie']
# Check if the number of predictions matches the number of class names
if len(prediction[0]) != len(class_names):
return f"Error: Number of model outputs ({len(prediction[0])}) does not match number of class names ({len(class_names)})."
# Create a dictionary with the probabilities for each dog breed
prediction_dict = {class_names[i]: np.round(float(prediction[0][i]), 2) for i in range(len(class_names))}
# Sort the dictionary by value in descending order and get the top 3 classes
sorted_predictions = dict(sorted(prediction_dict.items(), key=lambda item: item[1], reverse=True))
return sorted_predictions
input_image = gr.Image()
iface = gr.Interface(
fn=predict_bmwX,
inputs=input_image,
outputs=gr.Label(),
description="A simple MLP classification model for image classification using the MNIST dataset.")
iface.launch(share=True)
|