Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,34 +6,23 @@ from PIL import Image
|
|
6 |
model_path = "DogClassifier2.2.keras"
|
7 |
model = tf.keras.models.load_model(model_path)
|
8 |
|
9 |
-
# Ensure the model's output layer is correct
|
10 |
-
if not isinstance(model.layers[-1], tf.keras.layers.Softmax):
|
11 |
-
print("The last layer of the model is not a Softmax layer. The model might not be properly configured.")
|
12 |
-
|
13 |
# Define the core prediction function
|
14 |
def predict_bmwX(image):
|
15 |
# Preprocess image
|
16 |
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
|
17 |
image = image.convert("RGB") # Ensure the image is in RGB format
|
18 |
image = image.resize((150, 150)) # Resize the image to 150x150
|
19 |
-
image = np.array(image)
|
20 |
image = np.expand_dims(image, axis=0) # Add batch dimension
|
21 |
|
22 |
# Predict
|
23 |
-
|
24 |
-
|
25 |
-
# Debug statement to check the raw prediction values
|
26 |
-
print(f"Raw prediction: {raw_prediction}")
|
27 |
|
28 |
-
# Apply softmax to get probabilities for each class
|
29 |
-
|
30 |
-
prediction = tf.nn.softmax(raw_prediction).numpy()[0]
|
31 |
-
else:
|
32 |
-
prediction = raw_prediction[0]
|
33 |
|
34 |
-
#
|
35 |
-
print(
|
36 |
-
print(f"Sum of probabilities: {np.sum(prediction)}")
|
37 |
|
38 |
# Define class names
|
39 |
class_names = ['Afghan', 'African Wild Dog', 'Airedale', 'American Hairless', 'American Spaniel', 'Basenji', 'Basset', 'Beagle',
|
@@ -47,11 +36,21 @@ def predict_bmwX(image):
|
|
47 |
'Shiba Inu', 'Shih-Tzu', 'Siberian Husky', 'Vizsla', 'Yorkie']
|
48 |
|
49 |
# Check if the number of predictions matches the number of class names
|
50 |
-
if len(prediction) != len(class_names):
|
51 |
-
return f"Error: Number of model outputs ({len(prediction)}) does not match number of class names ({len(class_names)})."
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
# Create a dictionary with the probabilities for each dog breed
|
54 |
-
prediction_dict = {class_names[i]: np.round(float(prediction[i]), 2) for i in range(len(class_names))}
|
55 |
|
56 |
# Sort the dictionary by value in descending order and get the top 3 classes
|
57 |
sorted_predictions = dict(sorted(prediction_dict.items(), key=lambda item: item[1], reverse=True))
|
@@ -63,5 +62,5 @@ iface = gr.Interface(
|
|
63 |
fn=predict_bmwX,
|
64 |
inputs=input_image,
|
65 |
outputs=gr.Label(),
|
66 |
-
description="A simple
|
67 |
iface.launch(share=True)
|
|
|
6 |
model_path = "DogClassifier2.2.keras"
|
7 |
model = tf.keras.models.load_model(model_path)
|
8 |
|
|
|
|
|
|
|
|
|
9 |
# Define the core prediction function
|
10 |
def predict_bmwX(image):
|
11 |
# Preprocess image
|
12 |
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
|
13 |
image = image.convert("RGB") # Ensure the image is in RGB format
|
14 |
image = image.resize((150, 150)) # Resize the image to 150x150
|
15 |
+
image = np.array(image)
|
16 |
image = np.expand_dims(image, axis=0) # Add batch dimension
|
17 |
|
18 |
# Predict
|
19 |
+
prediction = model.predict(image)
|
|
|
|
|
|
|
20 |
|
21 |
+
# Apply softmax to get probabilities for each class
|
22 |
+
prediction = tf.nn.softmax(prediction)
|
|
|
|
|
|
|
23 |
|
24 |
+
# Print prediction probabilities to the console
|
25 |
+
print("Prediction probabilities:", prediction)
|
|
|
26 |
|
27 |
# Define class names
|
28 |
class_names = ['Afghan', 'African Wild Dog', 'Airedale', 'American Hairless', 'American Spaniel', 'Basenji', 'Basset', 'Beagle',
|
|
|
36 |
'Shiba Inu', 'Shih-Tzu', 'Siberian Husky', 'Vizsla', 'Yorkie']
|
37 |
|
38 |
# Check if the number of predictions matches the number of class names
|
39 |
+
if len(prediction[0]) != len(class_names):
|
40 |
+
return f"Error: Number of model outputs ({len(prediction[0])}) does not match number of class names ({len(class_names)})."
|
41 |
|
42 |
+
# Apply threshold and set probabilities lower than 0.015 to 0.0
|
43 |
+
threshold = 0.015
|
44 |
+
prediction = np.array(prediction)
|
45 |
+
prediction[prediction < threshold] = 0.0
|
46 |
+
|
47 |
+
# Recalculate the probabilities
|
48 |
+
total_probability = np.sum(prediction)
|
49 |
+
if total_probability > 0:
|
50 |
+
prediction = prediction / total_probability
|
51 |
+
|
52 |
# Create a dictionary with the probabilities for each dog breed
|
53 |
+
prediction_dict = {class_names[i]: np.round(float(prediction[0][i]), 2) for i in range(len(class_names))}
|
54 |
|
55 |
# Sort the dictionary by value in descending order and get the top 3 classes
|
56 |
sorted_predictions = dict(sorted(prediction_dict.items(), key=lambda item: item[1], reverse=True))
|
|
|
62 |
fn=predict_bmwX,
|
63 |
inputs=input_image,
|
64 |
outputs=gr.Label(),
|
65 |
+
description="A simple MLP classification model for image classification using the MNIST dataset.")
|
66 |
iface.launch(share=True)
|