Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ model_path = "DogClassifier2.4.keras"
|
|
7 |
model = tf.keras.models.load_model(model_path)
|
8 |
|
9 |
# Define the core prediction function
|
10 |
-
def
|
11 |
# Preprocess image
|
12 |
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
|
13 |
image = image.convert("RGB") # Ensure the image is in RGB format
|
@@ -35,10 +35,6 @@ def predict_bmwX(image):
|
|
35 |
'Poodle', 'Pug', 'Rhodesian', 'Rottweiler', 'Saint Bernard', 'Schnauzer', 'Scotch Terrier', 'Shar_Pei',
|
36 |
'Shiba Inu', 'Shih-Tzu', 'Siberian Husky', 'Vizsla', 'Yorkie']
|
37 |
|
38 |
-
# Check if the number of predictions matches the number of class names
|
39 |
-
if len(prediction[0]) != len(class_names):
|
40 |
-
return f"Error: Number of model outputs ({len(prediction[0])}) does not match number of class names ({len(class_names)})."
|
41 |
-
|
42 |
# Apply threshold and set probabilities lower than 0.015 to 0.0
|
43 |
threshold = 0.01395
|
44 |
prediction = np.array(prediction)
|
@@ -59,8 +55,8 @@ def predict_bmwX(image):
|
|
59 |
|
60 |
input_image = gr.Image()
|
61 |
iface = gr.Interface(
|
62 |
-
fn=
|
63 |
inputs=input_image,
|
64 |
outputs=gr.Label(),
|
65 |
-
description="A simple
|
66 |
iface.launch(share=True)
|
|
|
7 |
model = tf.keras.models.load_model(model_path)
|
8 |
|
9 |
# Define the core prediction function
|
10 |
+
def predict_breed(image):
|
11 |
# Preprocess image
|
12 |
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
|
13 |
image = image.convert("RGB") # Ensure the image is in RGB format
|
|
|
35 |
'Poodle', 'Pug', 'Rhodesian', 'Rottweiler', 'Saint Bernard', 'Schnauzer', 'Scotch Terrier', 'Shar_Pei',
|
36 |
'Shiba Inu', 'Shih-Tzu', 'Siberian Husky', 'Vizsla', 'Yorkie']
|
37 |
|
|
|
|
|
|
|
|
|
38 |
# Apply threshold and set probabilities lower than 0.015 to 0.0
|
39 |
threshold = 0.01395
|
40 |
prediction = np.array(prediction)
|
|
|
55 |
|
56 |
input_image = gr.Image()
|
57 |
iface = gr.Interface(
|
58 |
+
fn=predict_breed,
|
59 |
inputs=input_image,
|
60 |
outputs=gr.Label(),
|
61 |
+
description="A simple classification model for determining a dog breed.")
|
62 |
iface.launch(share=True)
|