Spaces:
Runtime error
Runtime error
File size: 8,693 Bytes
843b14b a24b16a 843b14b 7c89716 843b14b a24b16a 843b14b 7c89716 843b14b 7c89716 843b14b a24b16a 843b14b 7c89716 843b14b 7c89716 843b14b a24b16a 843b14b a24b16a 843b14b 7c89716 843b14b 7c89716 843b14b a24b16a 843b14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import argparse
import torch
from baukit import TraceDict
from diffusers import AutoencoderKL, UNet2DConditionModel
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from diffusers.schedulers.scheduling_lms_discrete import LMSDiscreteScheduler
import util
def default_parser():
parser = argparse.ArgumentParser()
parser.add_argument('prompts', type=str, nargs='+')
parser.add_argument('outpath', type=str)
parser.add_argument('--images', type=str, nargs='+', default=None)
parser.add_argument('--nsteps', type=int, default=1000)
parser.add_argument('--nimgs', type=int, default=1)
parser.add_argument('--start_itr', type=int, default=0)
parser.add_argument('--return_steps', action='store_true', default=False)
parser.add_argument('--pred_x0', action='store_true', default=False)
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--seed', type=int, default=42)
return parser
class StableDiffuser(torch.nn.Module):
def __init__(self,
scheduler='LMS'
):
super().__init__()
# Load the autoencoder model which will be used to decode the latents into image space.
self.vae = AutoencoderKL.from_pretrained(
"CompVis/stable-diffusion-v1-4", subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
self.tokenizer = CLIPTokenizer.from_pretrained(
"openai/clip-vit-large-patch14")
self.text_encoder = CLIPTextModel.from_pretrained(
"openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
self.unet = UNet2DConditionModel.from_pretrained(
"CompVis/stable-diffusion-v1-4", subfolder="unet")
if scheduler == 'LMS':
self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
elif scheduler == 'DDIM':
self.scheduler = DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
elif scheduler == 'DDPM':
self.scheduler = DDPMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
self.eval()
def get_noise(self, batch_size, img_size, generator=None):
param = list(self.parameters())[0]
return torch.randn(
(batch_size, self.unet.in_channels, img_size // 8, img_size // 8),
generator=generator).type(param.dtype).to(param.device)
def add_noise(self, latents, noise, step):
return self.scheduler.add_noise(latents, noise, torch.tensor([self.scheduler.timesteps[step]]))
def text_tokenize(self, prompts):
return self.tokenizer(prompts, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
def text_detokenize(self, tokens):
return [self.tokenizer.decode(token) for token in tokens if token != self.tokenizer.vocab_size - 1]
def text_encode(self, tokens):
return self.text_encoder(tokens.input_ids.to(self.unet.device))[0]
def decode(self, latents):
return self.vae.decode(1 / self.vae.config.scaling_factor * latents).sample
def encode(self, tensors):
return self.vae.encode(tensors).latent_dist.mode() * 0.18215
def to_image(self, image):
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def set_scheduler_timesteps(self, n_steps):
self.scheduler.set_timesteps(n_steps, device=self.unet.device)
def get_initial_latents(self, n_imgs, img_size, n_prompts, generator=None):
noise = self.get_noise(n_imgs, img_size, generator=generator).repeat(n_prompts, 1, 1, 1)
latents = noise * self.scheduler.init_noise_sigma
return latents
def get_text_embeddings(self, prompts, n_imgs):
text_tokens = self.text_tokenize(prompts)
text_embeddings = self.text_encode(text_tokens)
unconditional_tokens = self.text_tokenize([""] * len(prompts))
unconditional_embeddings = self.text_encode(unconditional_tokens)
text_embeddings = torch.cat([unconditional_embeddings, text_embeddings]).repeat_interleave(n_imgs, dim=0)
return text_embeddings
def predict_noise(self,
iteration,
latents,
text_embeddings,
guidance_scale=7.5
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latents = torch.cat([latents] * 2)
latents = self.scheduler.scale_model_input(
latents, self.scheduler.timesteps[iteration])
# predict the noise residual
noise_prediction = self.unet(
latents, self.scheduler.timesteps[iteration], encoder_hidden_states=text_embeddings).sample
# perform guidance
noise_prediction_uncond, noise_prediction_text = noise_prediction.chunk(2)
noise_prediction = noise_prediction_uncond + guidance_scale * \
(noise_prediction_text - noise_prediction_uncond)
return noise_prediction
@torch.no_grad()
def diffusion(self,
latents,
text_embeddings,
end_iteration=1000,
start_iteration=0,
return_steps=False,
pred_x0=False,
trace_args=None,
show_progress=True,
**kwargs):
latents_steps = []
trace_steps = []
trace = None
for iteration in tqdm(range(start_iteration, end_iteration), disable=not show_progress):
if trace_args:
trace = TraceDict(self, **trace_args)
noise_pred = self.predict_noise(
iteration,
latents,
text_embeddings,
**kwargs)
# compute the previous noisy sample x_t -> x_t-1
output = self.scheduler.step(noise_pred, self.scheduler.timesteps[iteration], latents)
if trace_args:
trace.close()
trace_steps.append(trace)
latents = output.prev_sample
if return_steps or iteration == end_iteration - 1:
output = output.pred_original_sample if pred_x0 else latents
if return_steps:
latents_steps.append(output.cpu())
else:
latents_steps.append(output)
return latents_steps, trace_steps
@torch.no_grad()
def __call__(self,
prompts,
img_size=512,
n_steps=50,
n_imgs=1,
end_iteration=None,
generator=None,
**kwargs
):
assert 0 <= n_steps <= 1000
if not isinstance(prompts, list):
prompts = [prompts]
self.set_scheduler_timesteps(n_steps)
latents = self.get_initial_latents(n_imgs, img_size, len(prompts), generator=generator)
text_embeddings = self.get_text_embeddings(prompts,n_imgs=n_imgs)
end_iteration = end_iteration or n_steps
latents_steps, trace_steps = self.diffusion(
latents,
text_embeddings,
end_iteration=end_iteration,
**kwargs
)
latents_steps = [self.decode(latents.to(self.unet.device)) for latents in latents_steps]
images_steps = [self.to_image(latents) for latents in latents_steps]
images_steps = list(zip(*images_steps))
if trace_steps:
return images_steps, trace_steps
return images_steps
if __name__ == '__main__':
parser = default_parser()
args = parser.parse_args()
diffuser = StableDiffuser(seed=args.seed, scheduler='DDIM').to(torch.device(args.device)).half()
images = diffuser(args.prompts,
n_steps=args.nsteps,
n_imgs=args.nimgs,
start_iteration=args.start_itr,
return_steps=args.return_steps,
pred_x0=args.pred_x0
)
util.image_grid(images, args.outpath) |