first commit
Browse files
jer.py
CHANGED
@@ -15,6 +15,7 @@
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
|
|
18 |
|
19 |
|
20 |
# TODO: Add BibTeX citation
|
@@ -28,7 +29,7 @@ year={2020}
|
|
28 |
|
29 |
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
|
32 |
"""
|
33 |
|
34 |
|
@@ -53,10 +54,6 @@ Examples:
|
|
53 |
{'accuracy': 1.0}
|
54 |
"""
|
55 |
|
56 |
-
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
-
|
59 |
-
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
class jer(evaluate.Metric):
|
62 |
"""TODO: Short description of my evaluation module."""
|
@@ -71,8 +68,8 @@ class jer(evaluate.Metric):
|
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
features=datasets.Features({
|
74 |
-
'predictions': datasets.Value('
|
75 |
-
'references': datasets.Value('
|
76 |
}),
|
77 |
# Homepage of the module for documentation
|
78 |
homepage="http://module.homepage",
|
@@ -88,8 +85,28 @@ class jer(evaluate.Metric):
|
|
88 |
|
89 |
def _compute(self, predictions, references):
|
90 |
"""Returns the scores"""
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return {
|
94 |
-
|
|
|
|
|
95 |
}
|
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
18 |
+
import numpy as np
|
19 |
|
20 |
|
21 |
# TODO: Add BibTeX citation
|
|
|
29 |
|
30 |
# TODO: Add description of the module here
|
31 |
_DESCRIPTION = """\
|
32 |
+
Computes precision, recall, f1 scores for joint entity-relation extraction task.
|
33 |
"""
|
34 |
|
35 |
|
|
|
54 |
{'accuracy': 1.0}
|
55 |
"""
|
56 |
|
|
|
|
|
|
|
|
|
57 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
58 |
class jer(evaluate.Metric):
|
59 |
"""TODO: Short description of my evaluation module."""
|
|
|
68 |
inputs_description=_KWARGS_DESCRIPTION,
|
69 |
# This defines the format of each prediction and reference
|
70 |
features=datasets.Features({
|
71 |
+
'predictions': datasets.features.Sequence(datasets.Value('string')),
|
72 |
+
'references': datasets.features.Sequence(datasets.Value('string')),
|
73 |
}),
|
74 |
# Homepage of the module for documentation
|
75 |
homepage="http://module.homepage",
|
|
|
85 |
|
86 |
def _compute(self, predictions, references):
|
87 |
"""Returns the scores"""
|
88 |
+
score_dicts = [
|
89 |
+
self._compute_single(prediction=prediction, reference=reference)
|
90 |
+
for prediction, reference in zip(predictions, references)
|
91 |
+
]
|
92 |
+
return {('mean_' + key): np.mean([scores[key] for scores in score_dicts]) for key in score_dicts[0].keys()}
|
93 |
+
|
94 |
+
def _compute_single(self, *, prediction: Iterable[str | Tuple | int], reference: Iterable[str | Tuple | int]):
|
95 |
+
reference_set = set(reference)
|
96 |
+
assert len(reference) == len(reference_set), f"Duplicates found in the reference list {reference}"
|
97 |
+
prediction_set = set(prediction)
|
98 |
+
|
99 |
+
TP = len(reference_set & prediction_set)
|
100 |
+
FP = len(prediction_set - reference_set)
|
101 |
+
FN = len(reference_set - prediction_set)
|
102 |
+
|
103 |
+
# Calculate metrics
|
104 |
+
precision = TP / (TP + FP) if TP + FP > 0 else 0
|
105 |
+
recall = TP / (TP + FN) if TP + FN > 0 else 0
|
106 |
+
f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0
|
107 |
+
|
108 |
return {
|
109 |
+
'precision': precision,
|
110 |
+
'recall': recall,
|
111 |
+
'f1': f1_score
|
112 |
}
|