Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,733 Bytes
4e70ef0 716f2ea 4e70ef0 f2ef239 60fb93f 9142ec3 4e70ef0 71141aa 4e70ef0 716f2ea 4e70ef0 716f2ea 4e70ef0 716f2ea b5c347a 716f2ea 4e70ef0 e744f2e 716f2ea 4e70ef0 716f2ea 9af016f 4e70ef0 716f2ea a32cba6 4e70ef0 716f2ea 4e70ef0 716f2ea 4e70ef0 71141aa 716f2ea 4e70ef0 716f2ea 4e70ef0 716f2ea ff558e1 716f2ea 4e70ef0 716f2ea 4e70ef0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
import re
from PIL import Image
import os
import numpy as np
#local use delete 9~11、36 line
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to("cuda").eval()
processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True)
TITLE = "# [Florence-2 SD3 Long Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner/)"
DESCRIPTION = "[Florence-2 Base](https://huggingface.co/microsoft/Florence-2-base-ft) fine-tuned on Long SD3 Prompt and Image pairs. Check above link for datasets that are used for fine-tuning."
def modify_caption(caption: str) -> str:
special_patterns = [
(r'The image shows ', ''), # 匹配 "The image shows " 并替换为空字符串
(r'The image is .*? of ', ''), # 匹配 "The image is .*? of" 并替换为空字符串
(r'of the .*? is', 'is') # 匹配 "of the .*? is" 并替换为 "is"
]
# 对每个特殊模式进行替换
for pattern, replacement in special_patterns:
caption = re.sub(pattern, replacement, caption, flags=re.IGNORECASE)
no_blank_lines = re.sub(r'\n\s*\n', '\n', caption)
# 合并内容
merged_content = ' '.join(no_blank_lines.strip().splitlines())
return merged_content if merged_content != caption else caption
@spaces.GPU
def process_image(image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif isinstance(image, str):
image = Image.open(image)
if image.mode != "RGB":
image = image.convert("RGB")
prompt = "<MORE_DETAILED_CAPTION>"
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
return modify_caption(parsed_answer["<MORE_DETAILED_CAPTION>"])
def extract_frames(image_path, output_folder):
with Image.open(image_path) as img:
base_name = os.path.splitext(os.path.basename(image_path))[0]
frame_paths = []
try:
for i in range(0, img.n_frames):
img.seek(i)
frame_path = os.path.join(output_folder, f"{base_name}_frame_{i:03d}.png")
img.save(frame_path)
frame_paths.append(frame_path)
except EOFError:
pass # We've reached the end of the sequence
return frame_paths
def process_folder(folder_path):
if not os.path.isdir(folder_path):
return "Invalid folder path."
processed_files = []
skipped_files = []
for filename in os.listdir(folder_path):
if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp', '.heic')):
image_path = os.path.join(folder_path, filename)
txt_filename = os.path.splitext(filename)[0] + '.txt'
txt_path = os.path.join(folder_path, txt_filename)
# Check if the corresponding text file already exists
if os.path.exists(txt_path):
skipped_files.append(f"Skipped {filename} (text file already exists)")
continue
# Check if the image has multiple frames
with Image.open(image_path) as img:
if getattr(img, "is_animated", False) and img.n_frames > 1:
# Extract frames
frames = extract_frames(image_path, folder_path)
for frame_path in frames:
frame_txt_filename = os.path.splitext(os.path.basename(frame_path))[0] + '.txt'
frame_txt_path = os.path.join(folder_path, frame_txt_filename)
# Check if the corresponding text file for the frame already exists
if os.path.exists(frame_txt_path):
skipped_files.append(f"Skipped {os.path.basename(frame_path)} (text file already exists)")
continue
caption = process_image(frame_path)
with open(frame_txt_path, 'w', encoding='utf-8') as f:
f.write(caption)
processed_files.append(f"Processed {os.path.basename(frame_path)} -> {frame_txt_filename}")
else:
# Process single image
caption = process_image(image_path)
with open(txt_path, 'w', encoding='utf-8') as f:
f.write(caption)
processed_files.append(f"Processed {filename} -> {txt_filename}")
result = "\n".join(processed_files + skipped_files)
return result if result else "No image files found or all files were skipped in the specified folder."
css = """
#output { height: 500px; overflow: auto; border: 1px solid #ccc; }
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Single Image Processing"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
gr.Examples(
[["image1.jpg"], ["image2.jpg"], ["image3.png"], ["image4.jpg"], ["image5.jpg"], ["image6.PNG"]],
inputs=[input_img],
outputs=[output_text],
fn=process_image,
label='Try captioning on below examples'
)
submit_btn.click(process_image, [input_img], [output_text])
with gr.Tab(label="Batch Processing"):
with gr.Row():
folder_input = gr.Textbox(label="Input Folder Path")
batch_submit_btn = gr.Button(value="Process Folder")
batch_output = gr.Textbox(label="Batch Processing Results", lines=10)
batch_submit_btn.click(process_folder, [folder_input], [batch_output])
demo.launch(debug=True) |